

YASKAWA AC Drive CH700

For Cranes 200 V Class, 0.4 to 110 kW 400 V Class, 0.4 to 315 kW

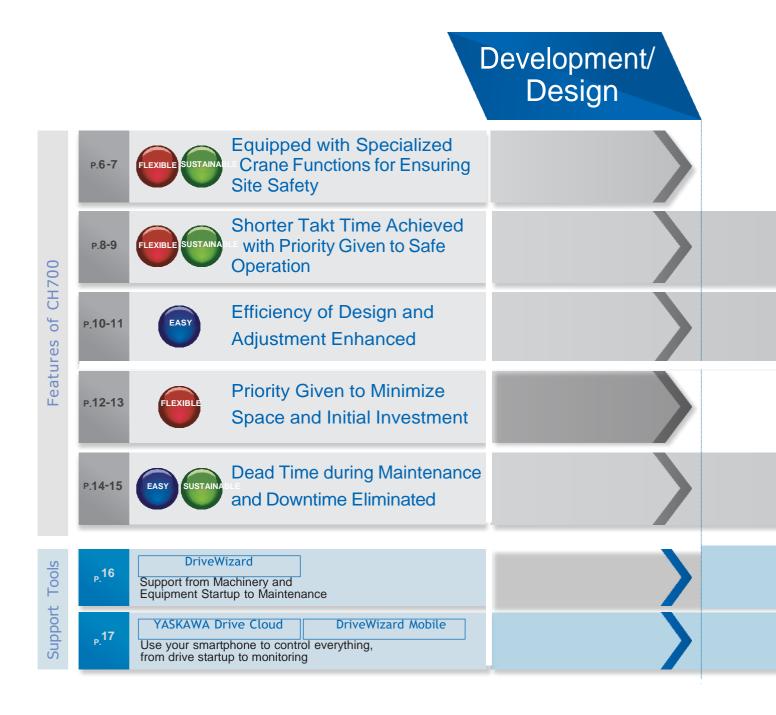
Best Value for Your Cranes

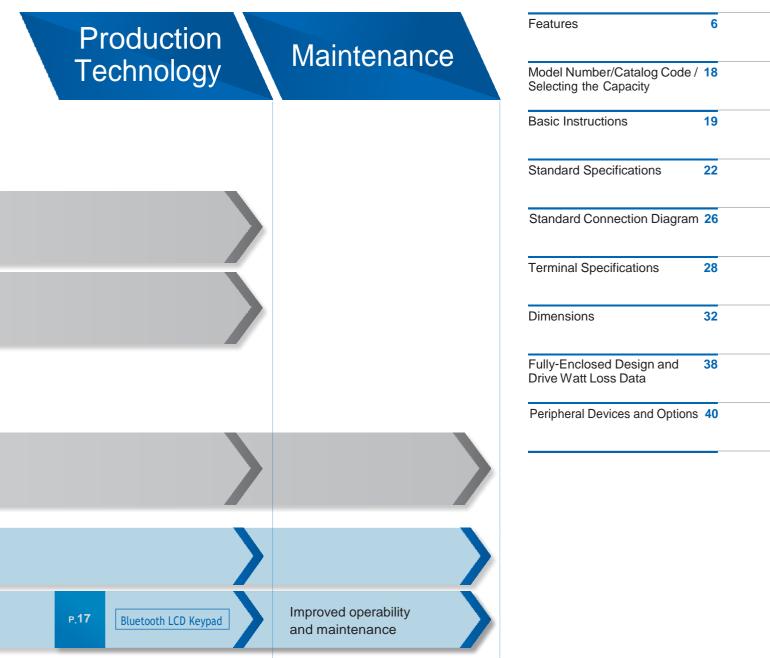
Specialized high-performance drives for cranes

Our number one priority at Yaskawa Electric Corporation is to always keep the customer's perspective in mind by leading the industry in meeting demands with uncompromising quality and trust. Our new CH700 was developed to further optimize cranes based on the concepts of Flexible, Easy, Sustainable.

Yaskawa can now deliver the most ideal "solutions" for various tasks related to the operation of cranes, including brake sequences that have evolved from the technologies we have developed to date.

Equipped with Specialized Crane Functions for Ensuring Site Safety

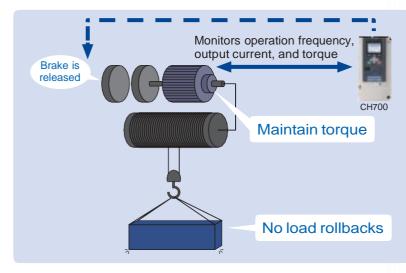

Shorter Takt Time Achieved with Priority Given to Safe Operation


Efficiency of Design and Adjustment Enhanced

Contents

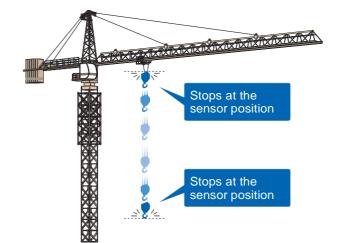
CH700 provides the best value for your application, whether it is development, design, production technology or after-sales service.

Note: Bluetooth is a trademark of Bluetooth SIG, Inc.


Equipped with Specialized Crane Functions for Ensuring Site Safety

Equipped with specialized crane functions gained through years of active service of Yaskawa AC drives in the field.

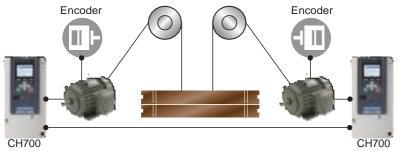
For Cranes


Rollback Prevented by Integrated Brake Sequence

The break release command is judged and output in relation to the operation frequency of the drive, output current, and amount of torque. Brakes are released and applied while ensuring enough torque to maintain the load during starts and stops to prevent load rollback.

Travel Limit Function Ensures Safe Stops

The limit sensor set in the allowable movement range prevents over-traveling and overwinding.


Slope Prevention Function Achieves Safe Traveling

High-precision control is performed in accordance with the operating conditions of machines to enable stable traveling and operation.

Synchronization Control*

Synchronization control is performed to prevent positional deviation that can occur when lifting a load jointly with two elevators using Closed Loop Vector Control. Separate equipment and control to reduce slope are not required.

*: Contact your Yaskawa representative when applying synchronization control.

Load Balancing Function

The load can be distributed evenly between drives without the use of encoders.

Conventional drives

 Image: Conventional drives


 Image: Chrono

 Image: Chrono</

SIL3 Supported as Standard. Safety Ensured without the Need for Additional Equipment

STO from two-terminal input (safety shut-off torque) is equipped as standard. Complies with IEC/EN61508 SIL3 and ISO13849-1 Cat.3 PLe.

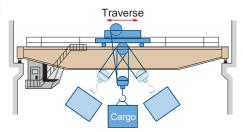
With this function, a high degree of safety can be built without additional equipment, such as an electromagnetic contactor. Saves wiring and space.

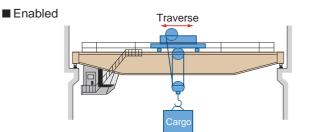
Drive 1

Drive 2

-Drive 1 -Drive 2

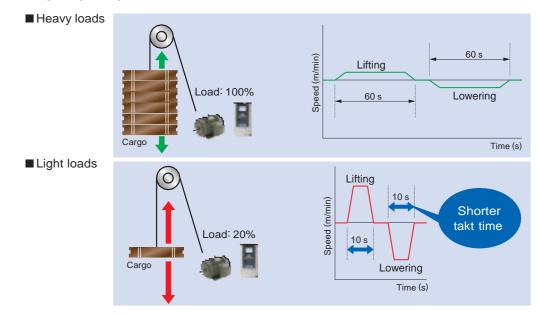
Shorter Takt Time Achieved with Priority Given to Safe Operation


This drive offers the worthwhile advantage of achieving enhanced workability while ensuring safety.


Workability Improved by Cargo Swing Suppression Function

Cargo swing during traverse motion can be reduced with the built-in Cargo Swing Suppression function. This enables cargo to be lowered without any swing, which reduces takt times.

Disabled


Cranes

Light-load Acceleration Function Achieves Shorter Takt Time

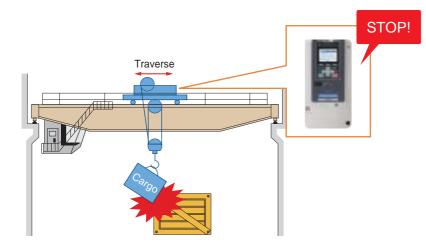
With this light-load, high-speed function, our drive operates at optimal speed in accordance with the load. High-speed operation can be performed when handling light loads. This shortens the tact times when using long lifting cranes, such as those used in constructions.

Drive Functions Ensure Safe Operation

Run Command Adjustment Function

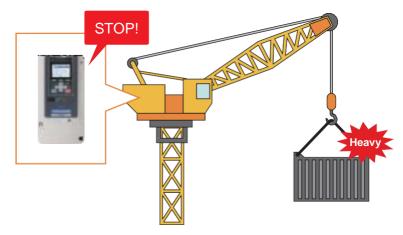
Reliable movement during inching. Our system prevents excessive current from flowing during lifting operations performed immediately after lowering operations.

Wire Length Detection


Information on the height of the hook that is not visible from the operating room can be externally output using only the drive.

Overtorgue Detection Function

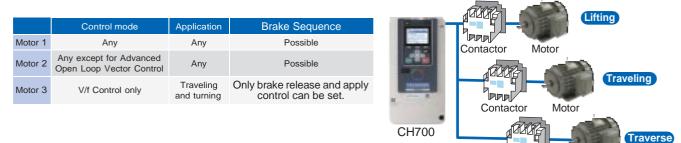
Quick Deceleration Function


This function supports reverse phase braking (plugging) in conventional crane operations that are not operated with drives. The deceleration rate can be changed to quickly stop operation by inputting a Run command in reverse to the current running direction after a Stop command is received. This enables quick deceleration near the target location even when using high speed operation.

Detects an increased torque value when a load comes into contact with an object. The drive stops the motor automatically to prevent machine malfunctions and increase safety.

Overload Detection Function

The drive restricts the operation of the crane (lifting) when the load exceeds a predetermined upper limit value. The drive can be configured to display alarms and stop crane operation to prevent operation with an overload that could lead to a dangerous situation.



Efficiency of Design and Adjustment Enhanced

Ensuring that specifications required for crane operation are maintained helps shorten the time until machinery and equipment startup.

3-Motor Switching Function

One drive can switch between and control motors with three axes for lifting/lowering, travelling, and transverse operations. Our drive can support individual brake sequences for each motor, so downtime during a drive failure can also be reduced as a result of the ability of drives to act as substitutes for other motors. Traditionally, one drive was needed for each motor. However, one drive can switch between motors to reduce the number of drives needed.

Application Preset Simplifies Setup

Simply set parameter A1-06 (Application Preset) matched to the intended crane application (lifting/ traverse/traveling) to let the drive automatically set the best parameter settings for the selected application. This greatly reduces the task of setting parameters.

Application	A1-06
Hoist (lifting)	1
Crane (traverse/traveling)	2
Hoist with PG (lifting)	3

Motor

Contactor

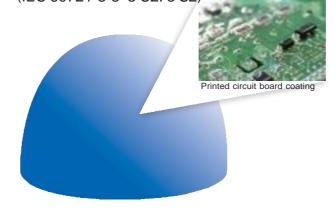
Contact Positioning Function

When the Stop command is valid while a contact position command is in effect for applications, such as transport lines, the drive detects collision and stops operating if the torque reference or output current are higher than the standard value.

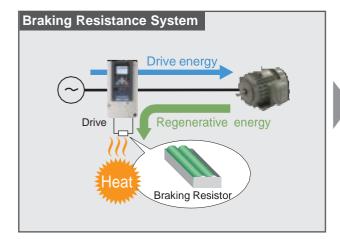
Quick positioning can be performed using this contact positioning function.

Note: This is only enabled when ramp to stop mode is selected.

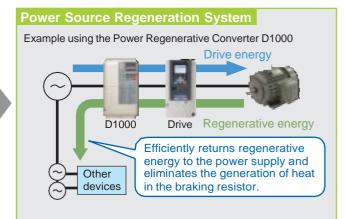
Do not use this function with machines such as trucks with wheels that may spin freely when there is a crash because the motor will not be constrained, and the torque reference or output current will not increase.


Wide range of protection for various environmental specifications

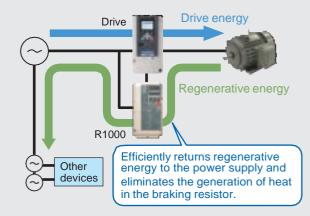
Resistant to vibration, gas, moisture, dust, and oil.


Varnish-Coated Printed Circuit Board

The printed circuit board is treated with varnish as standard and can be used under harsh environmental conditions. (IEC 60721-3-3: 3 C2, 3 S2)


Minimal Drive Watt Loss and Energy Savings

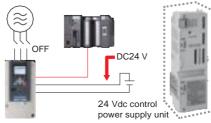
Regenerative energy that has conventionally been wasted as heat can be effectively used. The CH700 can minimize the generation of heat and avoid issues caused by heat in surrounding equipment.



■ How regenerative energy is processed

Model	Dynamic Braking Option	Power Regenerative Converter D1000	Power Regenerative Unit R1000
Regenerative energy treatment	0	0	0
Use power regeneration to save energy.	×	0	0
Suppression of harmonics	×	0	\bigtriangleup
Use with more than one drive	×	0	×
Reduction of power supply capacity	×	0	\bigtriangleup

Example using the Power Regenerative Unit R1000


Priority Given to Minimize Space and Initial Investment

In designing this drive, we thoroughly looked into how far the number of required peripheral devices and installation space can be reduced.

Peripheral Device Functions Incorporated for Minimal Initial Investment

Built-in Power Supply for the Sensor Separate power supply not required because the drive provides a 24 Vdc output (150 mA) for external sensors. ***************** Sensor Power supply 24 Vdc Control Power **Input Terminal Standard** Equipped **10 input terminals** Ð Standard Equipped By using an external 24 VDC power

supply, sequences and fault history can be checked even when the main circuit power supply is OFF.

SIL3* Correspondence **STO Standard Equipped**

Two contactors are no longer needed. *: Safety performance measurement under IEC/ EN61508

12 YASKAWA | YASKAWA AC Drive CH700 Catalog | KAEP C710617 24

Oscilloscope Function

With the improved oscilloscope function performance for the DriveWizard support tool, adjustments can be made without the need for external measuring instruments.

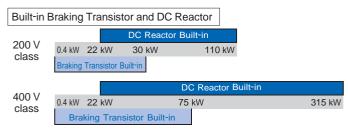
Oscilloscope

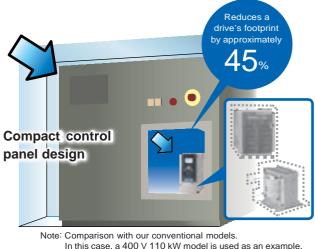
The digital frequency reference card DI-

series can also be used.

A3 input terminal can also be used as the multi-function input terminal. PG option cards and I/O option cards for the 1000

(Applicable up to 75 kW for 200 V Class/400 V Class)

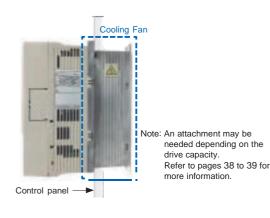

10 input terminals


6 input terminals

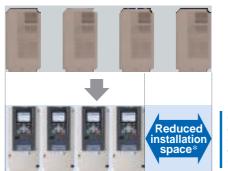
Minimal Installation Space

Braking Transistor / DC Reactor Built-in

Harmonics resulting from built-in DC reactors are taken into consideration. The braking transistor is also built in to eliminate the need for a standalone braking unit. This reduces a drive's footprint by approximately 45% in comparison with the conventional drives, which enables the design for more compact control panels.



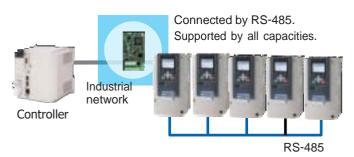
In this case, a 400 V 110 kW model is used as an example. Reductions in footprints vary depending on the capacity.


External Heatsink

The drive heatsink can be installed outside of the panel, and the control panel can be minimized.

Side-by-Side Installation

Multiple drives can be installed in close proximity (side-by-side installation). Note: Derating must be considered. (ex 200 V class 0.4 kW)



Compatible Models: CH70A2003 to 2075 (200 V class 0.4 to 18.5 kW) CH70A4002 to 4039 (400 V class 0.4 to 18.5 kW)

*: At least 30 mm of space is needed if installed near a wall.

Reduced Number of Parts

The network protocol for industrial use has been converted to RS-485 to enable control of up to five drives from a single communication option.

Enhanced Communication Option Card

A variety of field networks, including MECHATROLINK-II, MECHATROLINK-III, PROFIBUS-DP, DeviceNet, CC-Link, CANopen, LONWORKS, including Industrial Ethernet, such as EtherNet/IP, can be supported with the use of one communication option card.

Note: MECHATROLINK is a trademark of MECHATROLINK Members Association. PROFIBUS is a trademark of PROFIBUS Nutzerorganisation e.V. DeviceNet is a trademark of ODVA. Ethernet is a trademark of Fuji Xerox Co., Ltd.

Dead Time During Maintenance and Downtime Eliminated

Monitor functions and tools are available that allow anyone to perform maintenance and recovery work quickly and easily.

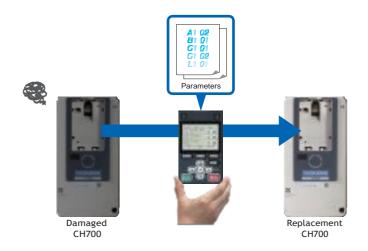
Very Latest LCD Keypad Considerably Reduces Maintenance and Downtime

Downtime: Non-operating time due to equipment problems.

Built-in Clock Functions

Easily identify the time of the malfunction with the built-in clock function. Note: Requires a Hitachi Maxell "CR2016 Lithium Manganese Dioxide Battery" or equivalent.

microSD Slot


Save log data to the microSD card. Saved data can be displayed as a waveform with the "DriveWizard" support tool, which helps you to understand what malfunction has occurred and simplifies analysis.

Capable of Storing Parameters of the Four Drives

The keypad can now store the parameters of up to four drives.

Automatic Parameter Backup Function

In the unlikely event that there is a problem with the drive, you can connect the keypad to the replacement drive and copy the parameters using the automatic parameter backup function.

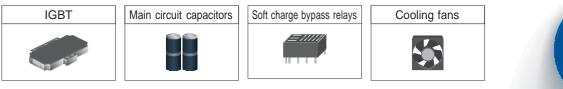
14 YASKAWA | YASKAWA AC Drive CH700 Catalog | KAEP C710617 24

Closed-Door Operations and Monitoring*1

By installing an LCD keypad on the surface of the control panel, you can operate and monitor the drive installed inside the panel without having to open a door.

*1: Requires compact Keypad Panel Mounting Kit (optional)

Crane Maintenance Monitor


The monitor keeps a count of the number of brake commands. This information is helpful in determining brake maintenance schedules for inspecting system and replacing parts.

Monitor Performance Life

Performance Life Monitors

With performance life monitors, the approximate maintenance period of parts can be output as an alarm signal to notify users in advance. In addition, you can monitor the deterioration status of the parts which can help you to make a maintenance plan easier.

▼ Limited lifetime service parts of drive

Quick Response

You can perform recovery work and confirm malfunctions without applying main circuit power.

Method 1: Supply power from 24Vdc external power supply

Method 2: Supply power from a computer or a smartphone via USB cable*²

Less Downtime

There is no need to reprogram and rewire the replacement drive in the event of failure. Simply replace the LCD keypad and terminal board to quickly replace the drive securely. You can select various parameter backup methods.

- Standard LCD keypad: Stores the parameters of up to four drives and is equipped with a built-in automatic parameter backup function.
- Easy replacement just by switching with a removable control circuit terminal block

Support from Machinery and Equipment Startup to Maintenance

in a factory setting

Support Tool DriveWizard

Simply connect the drive to a computer with a USB cable to centrally manage the parameters.

You can use the oscilloscope function to monitor operations and assist with maintenance.

Simple Connection

- Connect using a commercially-available USB cable (Mini B to Type A)
- \cdot Connect even when no power is supplied to the drive

Simple Adjustment

- · Read/write drive parameters
- Auto-Tuning
- \cdot Visual monitor that is easy to understand at a glance

Easy Maintenance


- Use the drive monitor to confirm the status of the machinery
 - Output frequency (Motor Rotation Speed)
 - Load Current
 - Output voltage
 - Power consumption
 - Torque
 - Hours of operation
 - Maintenance period

Easy Fault Analysis

 \cdot Displays the saved data on a microSD card as a waveform

USB connection

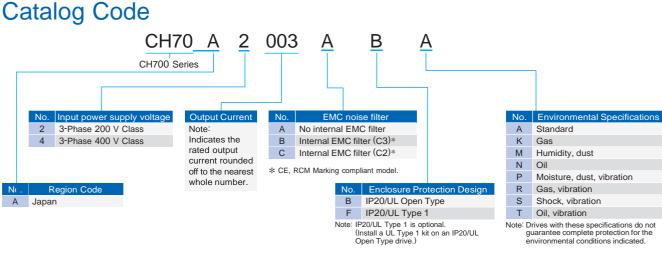
- \cdot Displays the drive monitor data as a graph
- Displays the I/O terminal status
- · Displays the fault history

Use a Smartphone to Adjust the Drive and Perform Maintenance

Web Product Management Service YASKAWA Drive Cloud

Efficient Production Management via the Cloud

By registering the machinery and equipment data or the parameters to a dedicated customer page, you can efficiently perform maintenance of machinery and equipment.


Model Number

Drives can be customized according to your specifications.

	CIPR- $CH70$ A 2 003 A 1 1 2 3 4 5	B 6	A 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
No	Description		No	Description					
1	Product series ·CH700 series		9	Control circuit terminal board ·G: 10 digital input, screw clamp terminal board type					
2	Region code •A: Japan			Option card (connector CN5-A) • A: No option card (Standard)					
3	Input power supply voltage •2: 3-phase AC 200 V Class •4: 3-phase AC 400 V Class		10	-D: Al-A3 (Analog Input) -E: Dl-A3 (Digital Input) -F: Sl-C3 (CC-Link) -G: Sl-ET3 (MECHATROLINK-III)					
4	Output Current*1		10	·H: SI-N3 (DeviceNet)					
5	EMC noise filter •A: No internal EMC filter (Standard) •B: Internal category C3 EMC filter •C: Internal category C2 EMC filter			 J: SI-P3 (PROFIBUS-DP) K: SI-T3 (MECHATROLINK-II) M: SI-S3 (CANopen) S: SI-EP3 (PROFINET) 					
6	Enclosure Protection Design •B: IP20/UL Open Type (Standard) •F: IP20/UL Type 1 Note: IP20/UL Type 1 is optional.		11	Option card (connector CN5-B) • A: No option card (Standard) • B: AO-A3 (Analog Monitor) • C: DO-A3 (Digital Output)					
	(Install a UL Type 1 kit on an IP20/UL Open Type drive.) Environmental specifications • A: Standard • K: Gas-resistant • M: Humidity-resistant and dust-resistant		12	Option card (connector CN5-C) • A: No option card (Standard) • U: PG-B3 (Complementary Type PG) • V: PG-X3 (Motor PG Feedback Line Driver Interface) • Y: PG-RT3 (Motor Feedback Resolver TS2640N321E64 Interface)					
7	 N: Oil-resistant P: Humidity-resistant, dust-resistant, and vibration-resistant R: Gas-resistant and vibration-resistant S: Vibration-resistant T: Oil-resistant and vibration-resistant Note: Drives with these specifications do not guarantee complete protection for the environmental conditions indicated. 		13	Keypad •A: LCD keypad (Standard)*2 •B: LCD keypad (humidity-resistant and dust-resistant)*2 •D: Bluetooth LCD Keypad*2 •E: Bluetooth LCD Keypad (humidity-resistant and dust-resistant)*2 •F: LED keypad (humidity-resistant and dust-resistant)*2 •G: LED keypad (humidity-resistant and dust-resistant)*2					
8	Design revision order			Special applications					
*1: Inc	dicates the rated output current rounded off to the nearest whole number.		14	·A: Standard					

*1: Indicates the rated output current rounded off to the nearest whole number. Refer to Rated Output Current column on page 22 to 23 for detailed values.

*2: A separate cable must be purchased to connect the drive and the keypad. Refer to Keypad Extension Cable on page 60 for more details.

Selecting the Capacity

When using the drive for shaft spinning, traversing, and traveling, the drive should be selected so that the rated output current of the drive output amps are equal to or greater than the motor rated current.

When using the drive for a lifting shaft, the current upon startup must be maintained to 150% or less of the rated output current. Yaskawa recommends selecting the drive according to the following formula.

Formula: rated output current of the drive × <u>coefficient (0.6 to 0.9)</u> > motor rated current

- Coefficient for each control mode
- Closed Loop Vector Control: 0.9
- Open Loop Vector Control, Advanced Open Loop Vector Control: 0.8
- V/f Control*, Closed Loop V/f Control: 0.7
- *: When driving multiple motors using one drive, it is calculated with a coefficient of 0.6. Calculate the motor rated current by the total value of two or more motors.

Basic Instructions

Outstanding operability and quick setup

Keypad Names and Functions

① RUN LED Lit while the drive is operating the motor.

② ALM LED The drive lights up if a fault is detected. Flashes when minor faults, tuning errors and operational errors occur.

- ⑤ LO/RE LED
- Lit : When the keypad is selected for Run command and frequency reference control (LOCAL).
- Off: When a device other than the keypad is selected for Run command and frequency reference control (REMOTE).

6 RUN Key Starts the drive in LOCAL mode.

⑦ STOP Key Stops drive operation.

⑧ Com port

For connecting to a PC (DriveWizard), a USB copy unit or a LCD keypad.

(9) LED Status Ring The corresponding lamp lights depending on the operation status.

(ii) QR code Import the dedicated smartphone application "DriveWizard Mobile" and use it to retrieve product information.

Keypad LED

③ Function Keys:

F1, F2, F3 The functions of the function

key depend on the menu that is being displayed. The name of each function appears in the lower half of the display window.

- ④ Display Operation Keys: LEFT Arrow Key
- Moves the cursor to the left.
- Returns to the previous screen.

UP Arrow Key / DOWN Arrow Key

- Scrolls up to display the next item.
- Scrolls down to display the previous item.
- Selects parameter numbers.
- Increments setting values.
- Decrements setting values.

RIGHT Arrow (RESET) Key

- Moves the cursor to the right.
- Proceeds to the next screen.
- Resets the drive to clear a fault.
 Used as the start key in
- Used as the start key in Auto-Tuning Mode.

ENTER Key

- Inputs parameter numbers and setting values. Press to enter values, edit parameters and set the control mode.
- Switches between displays with selection of menu items.

Note: QR code is a trademark of DENSO WAVE INCORPORATED.

Fully-Enclosed Design and Drive Watt Loss Data
Peripheral Devices and Options

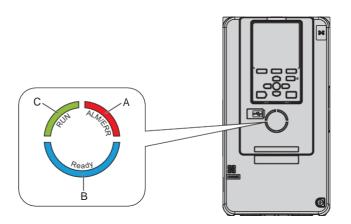
Indicator LED	Lit	Flashing	Flashing Quickly	OFF
RUN	Motor running.	The motor is performing ramp to stop. The Run command was inputted when the frequency reference was 0 Hz	 With a Run command inputted from an external command when the Run command source was in LOCAL, the Run command source switched to REMOTE. When the drive was not in the Drive Ready (READY) state, a Run command was inputted from an external command. An emergency stop command has been inputted. The Safe Disable input function was running and the drive output was shut off. When the Run command source was REMOTE, the STOP key on the keypad was pressed and the motor was stopped. The power supply for the drive is turned on when the Run command is inputted from an external source. 	Drive is stopped.
ALM	A fault was detected.	 Minor fault was detected. Operation error was detected. Auto-Tuning was detected. 	-	Normal operation
LORE	Sets the Run command source to the keypad (LOCAL).	_	_	Sets the Run command source to a non-keypad external command (REMOTE

How the RUN LED works:

Drive ou Markov / Markov Frequen RUN LE

put frequency	during stop	RUN	STOP		RUN	STOP
	0 Hz 6 Hz					
cy reference	0112					
C	OFF	Lit	Flashing	OFF	Flashing	OFF

Model Number/ Catalog Code / Selecting the Capaci

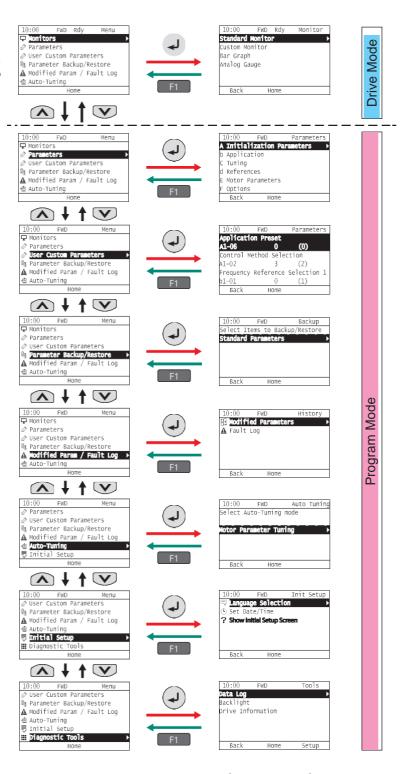

Standard Connection Diagram

Terminal Specifications

Dimensions

Basic Instructions (continued)

LED Status Ring


	LED Status Ring	State	Content
	ALM/ERR	Lit	The drive detected a fault.
A	Ready	Flashing	 The drive has detected: An error An oPE An error during Auto-Tuning. Note: If the drive detects a fault and an error at the same time, this LED will be lit to indicate the fault.
		OFF	The drive is in normal operation. There are no alarms of faults present.
	Ready	Lit	The drive is operating or is ready for operation.
	ALMIN ALMIN	Flashing	When the drive is in STo [Safe Torque Off] mode. The drive is in STo [Safe Torque Off] mode.
В	Ready	OFF	 The drive detected a fault. There is no fault and the drive received an operation command, but the drive cannot operate (such as when in Programming Mode, or when is flashing).
		Lit	The drive is in regular operation.
	RUN	Flashing	 The drive is decelerating to stop. The drive was issued a Run command and the frequency reference is 0 Hz. A DC injection braking command is input via a multi-function digital input terminal while the drive is stopped.
С	Ready	Flashing Quickly	 Entering a Run command via the input terminals, then switching to REMOTE while the drive is set to LOCAL. Entering a Run command via the input terminals when the drive is not in Drive Mode. Entering a Fast Stop command. The safety function shuts off the drive output. Pushing STOP on the keypad while the drive is running in REMOTE mode. Setting b1-17 = 0 [Run Command at Power Up = Accept existing RUN command] and powering up the drive while the Run command is active.
		OFF	The drive output stops.

Keypad Example

Turn the power on

10:00	FWD Rdy	Home	
Freq Refere U1-01 Hz		0.00	
Output Free U1-O2 Hz		0.00	
Output Curi U1-03 A	rent	0.00	
JOG	Menu	FWD/REV	

Home

Note: • Energizing the drive with factory defaults will display the initial start-up screen. Press F2 Key (Home) to display the Home screen. To prevent the drive from displaying the initial start-up

screen, Select [No] from the [Show Initial Setup Screen] Press Left Arrow Key from the Home screen to display the

- monitors.
- When U1-01 [Freq. Reference] is displayed on the Home screen in LOCAL mode, press ENTER Key to change parameter d1-01 [Frequency Reference].
 The keypad will display [Rdy] when the drive is in Drive
- Mode and ready to accept a Run command.

Standard Specifications

200 V Class

Catalog	Code CH70A2	003	005	008	011	014	018	025	033	047	060	075	088	115	145	180	215	283	346	415
Max. Ap	plicable kW	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Input	Rated Input A Current	3.6	4.8	8.9	12.7	17	20.7	30	40.3	58.2	78.4	96	82	111	136	164	200	271	324	394
	Rated Output A Current	3.2	5	8	11	14	17.5	25	33	47	60	75	88	115	145	180	215	283	346	415
	Overload Tolerance		50% of rated output current for 60 s ote: Derating may be required for applications that start and stop frequently.																	
Output	Carrier Frequency						oles a i ot nece					set.			maxin (Dera	num of ting the	e outpur f 10 kH e outpu p to 5	lz to be ut curre	e set.	
	Max. Output Voltage		-phase The m				age is	propoi	tional	to the	input v	oltage.								
	Max. Output Frequency		590 Hz The frequencies that can be set vary depending on the control mode used.																	
Measures for Harmonics	DC Reactor	Exter	nal opt	ions									Built-	in						
Braking Function	Braking Transistor	Built-	in												Exter	nal opt	ions			
EMC filter	EMC filter EN61800-3, C2/C3	Intern	al (fac	tory op	tion)															
	Rated Voltage / Rated Frequency		e-phas ower s				200 V 0 V	to 240	0 V 50	/60 Hz										
Dower	Allowable Voltage Fluctuation	-15%	6 to 10	%																
Power	Allowable Frequency Fluctuation	±5%																		
	Power kVA Supply*2	1.5	2.0	3.7	5.3	7.1	8.6	12.5	16.8	24.2	32.6	39.9	34.1	46.1	56.5	68.2	83.1	113	135	164

 $\pm 1:$ For the most appropriate selection, contact your Yaskawa or nearest sales representative.

 $\pm 2^{\circ}$ Rated input capacity is calculated with a power line voltage of 240 V.

400	V	C	lass

Catalog																
	Code CH70A4	002	003	005	006	007	009	015	018	024	031	039	045	060	075	091
Max. Applica Motor Capac	ity*1 KV	V 0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45
Input	Rated Input Current	A 1.9	3.5	4.7	6.7	8.9	11.7	15.8	21.2	30.6	41.3	50.5	43.1	58.3	71.5	86.5
	Rated Output Current	A 1.8	3.4	4.8	5.5	7.2	9.2	14.8	18	24	31	39	45	60	75	91
	Overload Tolerance	Note: D	150% of rated output current for 60 s Note: Derating may be required for applications that start and stop frequently.													
Output	Carrier Frequency		Derating the output current enables a maximum of 15 kHz to be set. (Derating the output current is not necessary up to 8 kHz.)													
	Max. Output Voltage		Three-phase 380 to 480 V Note: The maximum output voltage is proportional to the input voltage.													
	Max. Output Frequency	590 Hz The free		s that c	an be s	et vary o	lependi	ng on th	ne contro	l mode	used.					
Measures for Harmonics	DC Reactor	Externa	I option	S									Built-in	I		
Braking Function	Braking Transistor	Built-in														
EMC filter	EMC filter EN61800-3, C2/C3	Internal	(factory	option	ı)											
	Rated Voltage / Rated Frequency				er suppl 3 V to 6	-	to 480	V 50/6	0 Hz							
	Allowable Voltage Fluctuation	- 15% t	o 10%													
Power	Allowable Frequency Fluctuation	±5%														
	Power Supply*2 kV	A 1.5	2.8	3.7	5.3	7.1	9.3	13	17	24	33	40	34	46	57	69
Catalog	Code CH70A4	112	15	50	180	216	2	60	304	371	4	14	453	605	5	
Max. Applica Motor Capac		v 55	7	5	90	110	1	32	160	200	2	220	250	315	5	
	Dete d la sut		105 142 170 207 248 300 373 410 465 584													
Input	Rated Input Current	A 105	14	12	170	207	2	48	300	373	4	10	465	584	Ļ	
Input	Current Rated Output	A 105 A 112	14 15		170 180	207 216		48 60	300 304	373 371		10	465 453	584 605		
Input	Current Rated Output	A 112	15 of rated	50 output	180 current f	216 or 60 s	2	60		371	4	14				
Input Output	Current Rated Output Current	A 112 150% c Note: D Derating be set.	15 of rated erating g the ou	50 output may be itput cu	180 current f	216 or 60 s d for ap ables a	2 plicatio maximu	60 ns that : ım of 10	304 start and) kHz to	371 stop fre Deratin maxim (Derati	4 equently ng the c ium of 5 ing the	14 /. butput cu 5 kHz to	453 urrent en be set. current is	605 ables a	5	
- -	Current Rated Output Current Overload Tolerance	A 112 150% c Note: D Deratin be set. (Deratin three-p	15 of rated erating g the ou ng the o phase 3	50 output may be utput cu utput cu 80 to 48	180 current f e require rrent en urrent is 80 V	216 or 60 s d for ap ables a not nec	2 plicatio maximu essary	60 ns that : im of 10 up to 5	304 start and) kHz to	371 stop fre Deratin maxim (Deratin necess	equently ng the c jum of 5 ing the sary up	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
- -	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output	 A 112 A 150% c Note: D Derating be set. (Derating Derating Derating	15 of rated erating g the ou ng the o hase 3 he max	50 output may be utput cu utput cu 80 to 48 imum c	180 current f e require rrrent en urrent is 80 V output vo	216 or 60 s d for ap ables a not nec ltage is	2 plicatio maximu essary proport	60 ns that s im of 10 up to 5 ional to	304 start and) kHz to kHz.)	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
Output Measures for	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output	 A 112 A 150% c Note: D Derating be set. (Derating Derating Derating	15 of rated erating g the oung the ophase 3 he max quencie	50 output may be utput cu utput cu 80 to 48 imum c	180 current f e require rrrent en urrent is 80 V output vo	216 or 60 s d for ap ables a not nec ltage is	2 plicatio maximu essary proport	60 ns that s im of 10 up to 5 ional to	304 start and) kHz to kHz.) the inpu	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
Output Measures for Harmonics Braking	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency	A 112 150% c Note: D Deratin- be set. (Deratin be set. (Deratin (Der	15 of rated erating g the oung the o ohase 30 he max quencie	50 output of itput cu utput cu 80 to 48 imum of s that c	180 current f e require rrrent en urrent is 80 V output vo	216 or 60 s d for ap ables a not nec ltage is et vary c	2 plicatio maximu essary proport	60 ns that s im of 10 up to 5 ional to	304 start and) kHz to kHz.) the inpu	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
Output Measures for Harmonics Braking Function	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency DC Reactor	 A 112 A 150% of Note: D Derating be set. (Derating be set. (Derating be set.) Three p Note: T 590 Hz The free Built-in Built-in 	15 of rated erating g the oung the oung the oung the max quencie	50 output f may be utput cu utput cu 80 to 48 imum co s that c	180 current f rrent en urrent is 80 V output vo can be so	216 or 60 s d for ap ables a not nec ltage is et vary c	2 plicatio maximu essary proport	60 ns that s im of 10 up to 5 ional to	304 start and) kHz to kHz.) the inpu	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
Output Measures for Harmonics Braking Function	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency DC Reactor Braking Transistor EMC filter	 A 112 A 150% of Note: D Derating be set. (Derating be set. (Derating be set.) Three p Note: T 590 Hz The free Built-in Built-in Built-in Internal A Derating be set. (Derating be set.) 	15 of rated erating g the ou on the option of the option o	50 output (may be utput cu utput cu 80 to 48 imum o s that c E y option	180 current f rrent en urrent is 80 V output vo can be so	216 or 60 s d for ap ables a not nec ltage is et vary c options	2 plicatio maximu essary proport	60 Ins that s Ium of 10 Uup to 5 ional to Ing on th	304 start and) kHz to kHz.) the inpu	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
- -	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency DC Reactor Braking Transistor EMC filter EN61800-3, C2/C3 Rated Voltage /	 A 112 A 150% of Note: D Derating be set. (Derating be set. (Derating be set.) Three p Note: T 590 Hz The free Built-in Built-in Built-in Internal A Derating be set. (Derating be set.) 	15 of rated erating g the ou- ng the o bhase 3 he max quencie (factory ohase A wer sup	50 output (may be utput cu utput cu 80 to 48 imum o s that c E y option	180 current f e require urrent en urrent is 80 V butput vo can be so can be so caternal o	216 or 60 s d for ap ables a not nec ltage is et vary c options	2 plicatio maximu essary proport	60 Ins that s Ium of 10 Uup to 5 ional to Ing on th	304 start and) kHz to kHz.) the inpu	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	
Output Measures for Harmonics Braking Function	Current Rated Output Current Overload Tolerance Carrier Frequency Max. Output Voltage Max. Output Frequency DC Reactor Braking Transistor EMC filter EN61800-3, C2/C3 Rated Voltage / Rated Frequency Allowable Voltage	A 112 150% c Note: D Deratin- be set. (Deratin- be set. (Deratin- (15 of rated erating g the ou- ng the o bhase 3 he max quencie (factory ohase A wer sup	50 output (may be utput cu utput cu 80 to 48 imum o s that c E y option	180 current f e require urrent en urrent is 80 V butput vo can be so can be so caternal o	216 or 60 s d for ap ables a not nec ltage is et vary c options	2 plicatio maximu essary proport	60 Ins that s Ium of 10 Uup to 5 ional to Ing on th	304 start and) kHz to kHz.) the inpu	371 stop fre Deratin maxim (Deratinecess it voltag	4 equently ng the c um of 5 ing the sary up e.	/. output cu 5 kHz to output c	453 urrent en be set. current is	605 ables a	5	

*2: Rated input capacity is calculated with a power line voltage of 480 V.

Features

Model Number/ Catalog Code / Selecting the Capacity

> Basic Instructions

Standard Specifications

Standard Connection Diagram

Terminal Specifications

Dimensions

Fully-Enclosed Design and Drive Watt Loss Data

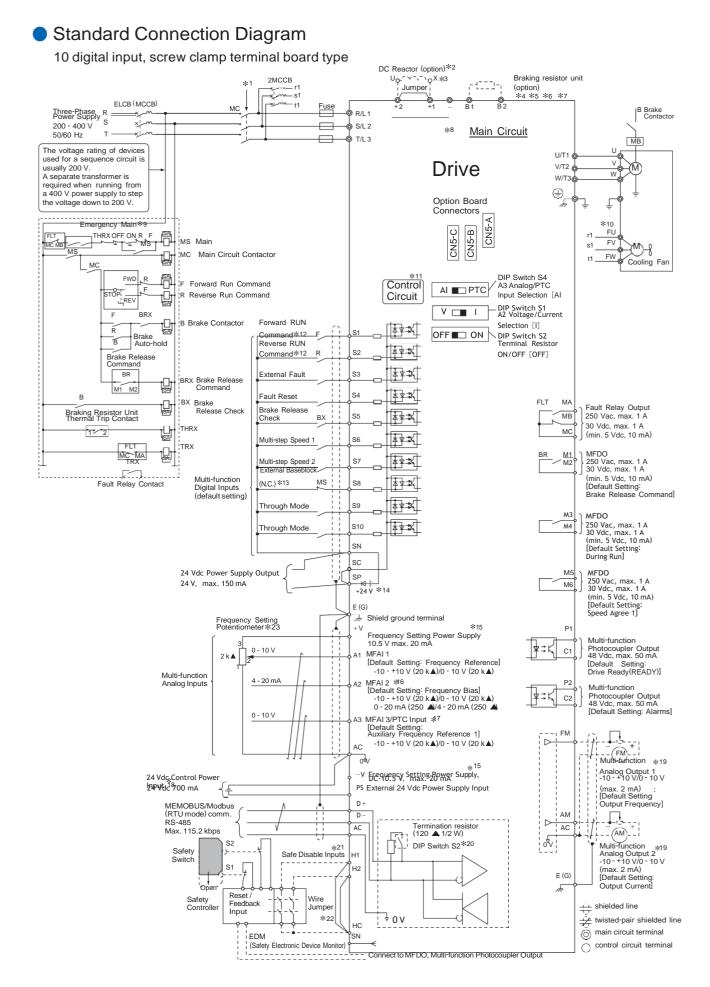
Peripheral Devices and Options

Standard Specifications

Common Specifications

	Item	Specifications
	Control Method	Specifications Specifications Specifications Specifications V/f Control ·Closed Loop V/f Control ·Open Loop Vector Control ·Closed Loop Vector Control ·Advanced Open Loop Vector Control
	Maximum Output Frequency	•Advanced Open Loop Vector Control: 120 Hz •Closed Loop V/f Control, Closed Loop Vector Control: 400 Hz •V/f Control, Open Loop Vector Control: 590 Hz
	Frequency Accuracy (Temperature Fluctuation)	Digital reference: within $\pm 0.01\%$ of the max. output frequency (-10°C to +40°C) Analog reference: within $\pm 0.1\%$ of the max. output frequency (25°C $\pm 10°C$)
	Frequency Setting Resolution	Digital reference: 0.01 Hz Analog reference: 1/2048 of the maximum output frequency setting (11 bit plus sign)
	Output Frequency Resolution	0.001 Hz
	Frequency Setting Signal	Main frequency reference: -10 to +10 Vdc, 0 to 10 Vdc (20 k▲), 4 to 20 mA (250 ▲), 0 to 20 mA (250 ▲)
	Starting Torque	 ·V/f Control: 150%/3 Hz ·Closed Loop V/f Control: 150%/3 Hz ·Open Loop Vector Control: 200%/0.3 Hz*1 ·Closed Loop Vector Control: 200%/0 min^{-1*1} ·Advanced Open Loop Vector Control: 200%/0.3 Hz*1
Control Characteristics	Speed Control Range	 •V/f Control 1:40 •Closed Loop V/f Control 1:40 •Open Loop Vector Control 1:200 •Closed Loop Vector Control 1:1500 •Advanced Open Loop Vector Control 1:200
hara	Zero Speed Control	Possible in Closed Loop Vector Control.
ntrol CI	Torque Limit	Parameter settings allow separate limits in four quadrants in Open Loop Vector Control, Closed Loop Vector Control, and Advanced Open Loop Vector Control.
Cor	Accel/Decel Time	0.0 s to $6000.0 sThe drive allows four selectable combinations of independent acceleration and deceleration settings.$
	Braking Torque	 Approx. 20% Approx. 125% with a dynamic braking option Short-time average deceleration torque Motor capacity 0.4/0.75 kW: over 100% Motor capacity 1.5 kW: over 50% Motors 2.2 kW and larger: over 20%, Overexcitation Braking allow for approx. 40% Continuous regenerative torque: Approx. 20%. Dynamic braking option allows for approx. 125%, 10% ED, 10 s Note: Catalog codes CH70A2003 to 2115 and 4002 to 4150 have a built-in braking transistor. Set L3-04 = 0 [Disabled] (default setting) when connecting the regenerative converter, regenerative unit, braking unit and braking resistor unit. The drive may not stop within the specified deceleration time if L3-04 is changed to 1 through 5 [Enabled]. Short-time deceleration torque refers to the torque required to decelerate the motor (uncoupled from the load) from the rated speed to zero. Actual specifications may vary depending on motor characteristics. Continuous regenerative torque and short-time deceleration torque for motors 2.2 kW and larger vary depending on motor characteristics.
	V/f Characteristics	Select from 15 predefined V/f patterns, or a user-set V/f pattern.
	Main Control Functions	Droop Control, Feed Forward Control, Zero Servo Control, torque limit, 9 Step Speed (max.), accel/decel switch, S-curve accel/decel, Auto-Tuning (rotational, stationary), cooling fan on/off switch, slip compensation, torque compensation, Frequency Jump, Upper/lower limits for frequency reference, Injection Braking at start and stop, Overexcitation Deceleration, MEMOBUS/Modbus (RTU mode) Communications (RS-485, max. 115.2 kbps), Parameter Backup Function, Online Tuning, Overexcitation Deceleration, Inertia Tuning and ASR Tuning, Crane Sequence, etc.
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200%*2 of rated output current.
	Overload Protection	Drive stops after 60 s at 150% of rated output current. Note: The drive may trigger the overload protection function at 150% of the drive rated output in under 60 s if the output frequency is less than 6 Hz.
tion	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V 400 V class: Stops when DC bus exceeds approx. 820 V
Protection Function	Undervoltage Protection	200 V class: Stops when DC bus falls below approx. 190 V 400 V class: Stops when DC bus falls below approx. 380 V
ction	Heatsink Overheat Protection	Thermistor
Protec	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3% ED)
	Stall Prevention	Stall prevention during acceleration/deceleration and constant speed operation
	Ground Fault Protection	Protection by electronic circuit Note: Protection may not be provided under the following conditions as the motor windings are grounded internally during run: Low resistance to ground from the motor cable or terminal block. Drive already has a short-circuit when the power is turned on.
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V

	Item	Specifications	- 1	⊉
	Area of Use	Indoors •chemical gas: IEC 60721-3-3: 3 C2 •solid particle: IEC 60721-3-3: 3 S2		Model Number/ Catalog Code / Selecting the Capacity
	Power Supply	Overcurrent Category III	:	M od Cata ectir
	Ambient Temperature	 IP20/UL Open Type: -10°C to +50°C IP20/UL Type 1: -10°C to +40°C Do not use the drive in a location where the temperature changes suddenly to improve the drive reliability. When installing the drive in an enclosure, use a cooling fan or air conditioner to keep the internal air temperature in the permitted range. Do not let the drive freeze. To install IP20/UL Open Type drives in areas with ambient temperatures 務60°C, derate the output current. To install IP20/UL Type 1 drives in areas with ambient temperatures 務60°C, derate the output current. 	l	Basic Instructions
nent	Humidity	95% RH or less (no condensation)		ans ons
ronr	Storage Temperature	Short-term temperature during transportation is -20 °C to +70 °C		ficati
Environment		Pollution degree 2 or less Install the drive in an area without: •Oil mist, corrosive or flammable gas, or dust		Standard Specifications
	Surrounding Area	 Metal powder, oil, water, or other unwanted materials Radioactive materials or flammable materials, including wood Harmful gas or fluids Salt Direct sunlight Keep wood or other flammable materials away from the drive. 		Standard Connection Diagram
	Altitude	1000 m or less*3		S
	Shock	 10 Hz to 20 Hz, 1 G (9.8 m/s²) 20 Hz to 55 Hz, Catalog code CH70A2003 to 2180, 4002 to 4150: 0.6 G (5.9 m/s²), Catalog code CH70A2215 to 2415, 4180 to 4605: 0.2 G (2.0 m/s²) 		Terminal Specifications
Sta	andards Compliance	 ·UL61800-5-1 ·EN61800-3:2004+A1:2012 ·IEC/EN61800-5-1 ·Two Safe Disable inputs and 1EDM output according to ISO/EN13849-1 Cat.3 Ple, IEC/EN61508 SIL3 Note: Used by setting functions to multi-function digital output terminals. 		Dimensions
En	closure Protection Design	IP20/UL Open Type, IP20/UL Type 1 Note: Install a UL Type 1 kit on an IP20/UL Open Type drive to convert the drive to IP20/UL Type 1.		Dime


*1: Increase the drive and motor capacities.
*2: 200% is the target value. The value varies depending on the capacity.
*3: Altitudes over 1000 m and up to 4000 m are possible by derating the output current by 1% for every 100 m. Contact Yaskawa or your nearest sales representative for details.

Note: 1. Perform Rotational Auto-Tuning to achieve specifications listed for Open Loop Vector Control, Close Loop Vector Control and Advanced Open Loop Vector Control. 2. Install the drive in an environment matching the specifications in the table above for optimum performance life.

Fully-Enclosed Design and Drive Watt Loss Data

Peripheral Devices and Options

Standard Connection Diagram

Terminal Specifications

Dimensions

Fully-Enclosed Design and Drive Watt Loss Data

Peripheral Devices and Options

- Standard Connection Diagra
- *21: Use sourcing mode when using an internal power supply for Safe Disable input.
- $\pm 22^{:}$ Disconnect the wire jumper between H1 and HC, and H2 and HC to use the Safe Disable input.
- *23: A frequency setting potentiometer is connected with model RV30YN(2 k A.

- *1: We recommend that the sequence that de-energizes the power supply be set via the fault relay output for the drive.
- *2: Be sure to remove the jumper between terminals +1 and +2 when installing a DC reactor (option).
- *3: Catalog codes CH70A2088 to 2415 and 4045 to 4605 have a built-in DC reactor.
- *4: Be sure to set L8-55 = 0 [Internal DB Transistor Protection = Disable] when using an optional regenerative converter, regenerative unit, or braking unit. Leaving L8-55 = 1 [Protection Enabled] can cause rF [Braking Resistor Fault].
- *5: Set L3-04 = 0 [Disabled] (default setting) when connecting the regenerative converter, regenerative unit, braking unit and braking resistor unit. The drive may not stop within the specified deceleration time if L3-04 is changed to 1 through 5 [Enabled].
- *6: Set L8-01 = 1 [3% ERF DB Resistor Protection = Enabled] and set a sequence to de-energize the drive with the fault relay output when using an ERF-type braking resistor.
- *7: When connecting a braking unit (CDBR series) or a braking resistor unit (LKEB series) to the catalog code CH70A2088, 2115, and 4091, use wires that are in the range of the applicable gauges for the drive. A junction terminal is required when connecting wires that are less than the applicable gauge to the drive. Contact Yaskawa or your nearest sales representative for details on selection and installation of the junction terminal.
- *8: Terminals -, +1, +2, B1 and B2 are the optional connection terminals. Do not connect an AC power supply to terminals -, +1, +2, B1, and B2. Failure to obey can cause damage to the drive and peripheral devices.
- *9: Use a sequence that shuts the power OFF by Fault relay output.
- *10: Self-cooling motors do not require the wiring for the motors with cooling fans.
- *11: Connect a 24 V power supply to terminals PS-AC to operate the control circuit while the main circuit power supply is OFF.
- *12: Check that the wiring is set up so that the motor rotates in forward (FOR) when hoisting, and reverse (REV) when lowering in every control method.

- *13: The baseblock is released when the external baseblock command is ON.
- *14: Use a wire jumper between terminals SC and SP or SC and SN to set the MFDI power supply to SINK Mode, SOURCE Mode, or External power supply. Do not short circuit terminals SP and SN. Failure to obey will cause damage to the drive.

·SINK Mode: Install a jumper between terminals SC and SP. Do not short circuit terminals SC and SN. Failure to obey will cause damage to the drive.

·SOURCE Mode: Install a jumper between terminals SC and SN. Do not short circuit terminals SC and SP. Failure to obey will cause damage to the drive.

- ·External power supply: No jumper necessary between terminals SC and SN or terminals SC and SP.
- *15: The output current capacity of the +V and -V terminals on the control circuit is 20 mA. Do not install a jumper between terminals +V, -V, and AC. Failure to obey can cause damage to the drive.
- *16: DIP switch S1 set terminal A2 for voltage or current input. The default setting for S1 is current input ("I" side).
- *17: DIP switch S4 sets terminal A3 for analog or PTC input.
- *18: Connect the positive lead from an external 24 Vdc power supply to terminal PS and the negative lead to terminal AC. Reversing polarity can cause damage to the drive.
- *19: Use multi-function analog monitor outputs with analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use monitor outputs with feedback-type signal devices.
- *20: Set DIP switch S2 to "ON" to enable the termination resistor in the last drive in a MEMOBUS/Modbus (RTU mode) network.

Terminal Specifications

Terminal Functions

Main Circuit Terminals

Voltage		200 V Class		400 V Class								
Catalog Code CH70A	2003 to 2075	2088 to 2115	2145 to 2415	4002 to 4039	4045 to 4150	4180 to 4371	4414 to 4605					
Max. Applicable Motor Capacity kW	0.4 to 18.5	22, 30	37 to 110	0.4 to 18.5	22 to 75	90 to 200 220 to 315						
R/L1, S/L2, T/L3	Main circuit input p	ower supply		Main circuit input p	ower supply							
U/T1, V/T2, W/T3	Drive output			Drive output	Drive output							
B1, B2	Braking resistor un	it connection	-	Braking resistor un	Braking resistor unit connection -							
+2	DC reactor (+1, +2)	-	-	DC reactor (+1, +2)	-	-	-					
+1 -	DC power supply $(+1, -)$	DC power supply (+1, -)	DC power supply (+1, -)	DC power supply (+1, -)	DC power supply (+1, -)	DC power supply (+ Braking unit (+3, -)	+1, -)					
+3	-	-	Braking unit (+3, -)	-	-	Braking unit (+3, -)	1					
	Ground terminal (10	0 🛦 or less)		Ground terminal (10 ▲ or less)								

Note: 1. Use terminals B1 and - to connect a CDBR braking unit to drive models CH70A2003 to 2115 and CH70A4002 to 4150 with built-in braking transistors. 2. CH70A2180 and CH70A4150 or less are used for European terminals.

Control Circuit Input Terminals (200 V/400 V Class)

Terminal Type	Terminal	Signal Function (default)	Description (Signal Level)
	S1	Multi-function input selection 1 (Forward RUN Command)	
	S2	Multi-function input selection 2 (Reverse RUN Command)	
	S3	Multi-function input selection 3 (External fault, N.O.)	•Photocoupler
	S4	Multi-function input selection 4 (Fault reset)	- 24 V, 6 mA Note:
	S5	Multi-function input selection 5 (Brake Release Check)	Use a wire jumper between terminals SC and SP or SC and SN to set the MFDI power supply to SINK Mode, SOURCE Mode, or External power supply. •SINK Mode: Install a jumper between terminals SC and SP.
Multi-Function	S6	Multi-function input selection 6 (Multi-step speed reference 1)	Do not short circuit terminals SC and SN. Failure to obey will cause damage to the drive. •SOURCE Mode: Install a jumper between terminals SC and SN.
Digital Input	S7	Multi-function input selection 7 (Multi-step speed reference 2)	Do not short circuit terminals SC and SP. Failure to obey will cause damage to the drive.
	S8	Multi-function input selection 8 (External Baseblock, N.C.)	•External power supply: No jumper necessary between terminals SC and SN or terminals SC and SP.
	S9	Multi-function input selection 9 (Through Mode)	
	S10	Multi-function input selection 10 (Through Mode)	
	SN	Digital input power supply 0V 24V transducer power supply 0V	MFDI power supply and sensor power supply, 24 Vdc (max. 150 mA)
	SC	Multi-functions input common	Note: Do not install a jumper between terminals SP and SN. Failure to comply will damage the drive.
	SP	Multi-function input power supply +24 Vdc	C C C C C C C C C C C C C C C C C C C
	H1	Safety Input 1	Remove the jumper between terminals H1-HC and H2-HC when using the Safe Disable input. •24 Vdc 6 mA
Safety Input	H2	Safety Input 2	·ON: Normal operation ·OFF: Output disabled ·Internal impedance 4.7 k ▲ ·Switching time at least 2 ms
	HC	Safety input common	Safety input common Note: Do not install a jumper between terminals HC and SN. Failure to comply will damage the drive.
	+V	Setting power supply	10.5 V (20 mA max.)
	-V	Setting power supply	-10.5 V (20 mA max.)
	A1	Multi-function analog input 1 (Main frequency reference)	Voltage input Select the signal level with H3-01 [Terminal A1 Signal Level Select]. -10 to +10 Vdc for −100 to +100% (impedance 20 k ▲ -0 to 10 Vdc for 0 to 100% (impedance 20 k ▲
Main Frequency Reference	A2	Multi-function analog input 2 (Frequency reference bias with terminal A1)	Voltage input or current input Select the signal level with DIP switch S1 and H3-09 [Terminal A2 Signal Level Select]. 10 to +10 Vdc for -100 to +100% (impedance 20 k ▲) -0 to 10 Vdc for 0 to 100% (impedance 20 k ▲) -4 to 20 mA for 0 to 100%, 0 to 20 mA for 0 to 100% (impedance 250 ▲)
Input	A3	Multi-function analog input 3/PTC input (Auxiliary frequency reference)	Voltage input Select the signal level with H3-05 [Terminal A3 Signal Level Select]. 10 to +10 Vdc for -100 to +100% (impedance 20 k ▲ -0 to 10 Vdc for 0 to 100% (impedance 20 k ▲ PTC input (For motor overheat protection) Set DIP switch S4 to "PTC" to set terminal A3 for PTC input.
	AC	Frequency reference common	0 V
	E(G)	Shielded cable	-

Control Circuit Input Terminals (200 V/400 V) (continued)

Terminal Type	Terminal	Signal Function (default)	Description (Signal Level)	ity
Fault Relay	MA	N.O. output (Fault)	•Relay output	Model Number/ Catalog Code / Selecting the Capacity
Output	MB	N.C. output (Fault)	•30 Vdc or less, 10 mA to 1 A •250 Vac or less, 10 mA to 1 A	
Output	MC	Digital output common	•Minimum load: 5 Vdc, 10 mA (Values only for reference)	del N alog ng th
	M1	Multi-function digital output	·Relay output	Moc Cat
	M2	(Brake Release Command)	•30 Vdc or less, 10 mA to 1 A •250 Vac or less, 10 mA to 1 A	Se
Multi-Function	M3	Multi-function digital output (During run)	•Minimum load: 5 Vdc, 10 mA (Values only for reference)	
Digital Output	M4	Mail fulletion algital output (During full)	Note: Switching life is estimated at 8,000,000 times (assumes 30 mA, inductive load) and 200,000 times (assumes 1 A, resistive load). When an inductive load such as	suc
	M5	Multi-function digital output (Speed agree 1)	relay coils is switched on and off, connecting the surge absorber parallel to the	Basic Instructions
	M6		load is an effective means to protect the contacts.	B; Stru
	P1	Multi-Function Photocoupler Output	Photocoupler output Flywheel diode	<u> </u>
Multi-Function	~ ((Drive Ready (READY))	-48 Vdc or less, 2 to 50 mA Note: Connect a flywheel diode	
Photocoupler	C1		as shown below when	s
Output	P2	Multi-Function Photocoupler Output	driving a reactive load power \pm (count of the second of	Standard
Output		(Alarms)	such as a relay coil. Diode 48 V max. (50 mA max.)	ifice
	C2	(Alainis)	than the circuit voltage.	Sta
	FM	analog monitor (1) (Output frequency)	Voltage output	S
Monitor	I IVI	analog monitor (1) (Output frequency)	 O to 10 Vdc for 0 to 100% -10 to 10 Vdc for −100 to 100% 	E
Output	AM	analog monitor (2) (Output current)	Note: Select the signal level with H4-07 [Terminal FM Signal Level Select] and	I
Output	,		H4-08 [Terminal AM Signal Level Select].	dard Dia
	AC	Monitor common	0 V	tanc
External De	wor 9	supply Input Terminals (200 V/4		Standard Connection Diagram
				Col
Tvpe	Term	inal Terminal Name (Default)	Function	

External Power Supply Input Terminals (200 V/400 V Class)

Туре	Terminal	Terminal Name (Default)	Function
External Power Supply	PS	External 24 V power supply input	Supplies backup power to the drive control circuit, keypad, and option card. 21.6 Vdc to 26.4 Vdc, 700 mA
Input Terminals	AC	External 24 V power supply ground	0 V

Serial Communication Terminals (200 V/400 V Class)

Classification	Terminal	Signal Function	Description(Signa	al Level)
MEMOBUS /	D+	Communications input (+)	MEMOBUS/Modbus (RTU mode) communications: Use an RS-485 cable to connect the drive.	•RS-485 •MEMOBUS/Modbus (RTU mode)
Modbus (RTU mode) Communications	D-	Communications input (-)	Note: Set DIP switch S2 to ON to enable the termination resistor in the last drive in a MEMOBUS/Modbus (RTU mode) network.	communications protocol • Max. 115.2 kbps
	AC	Shield ground	0 V	

Tools for Wiring European Style Terminal Blocks (Recommended product)

Check the "Terminal size / Wire gauge" on the next page and prepare the tools for wiring.

Screw size	Screw type	Recommended Product	Bit				
M4	Slot ⊖	Prepare the following two tools. - Bit[PHOENIX CONTACT] Model: SF-BIT-SL 1,0X4,0-70 - Torque screwdriver[PHOENIX CONTACT] Model: TSD-M 3NM (1.2 to 3 N·m)	Application screw slot	Mode SF-BIT-SL 1, SF-BIT-SL 1, SF-BIT-HEX	0X4,0-70 2X6,5-70 5-50	Tip of Bit Slot Tip, M4 Slot Tip, M5 Hexagon Tip, M6	Code No. 100-250-491 100-250-492 100-250-488
M5	Slot	When wiring drive models CH70A2047 and CH70A4075 or earlier models, be sure to correctly select tools based on the wire gauges. Wiring Gauge: s25 mm ² or AWG10 - Bit[PHOENIX CONTACT] Model: SF-BIT-SL 1,2X6,5-70 - Torque screwdriver[PHOENIX CONTACT] Model: TSD-M 3NM (1.2 to 3 N·m) Wiring Gauge: s30 mm ² or AWG8 - Torque wrench that includes a torque measurement range of 4.5 N·m - Bit socket holder of 6.35 mm	Torque screw	SF-BIT-HEX SF-BIT-HEX vdriver	8-50	Hexagon Tip, M8 Hexagon Tip, M10	
	Hex socket (WAF: 5)	Prepare the following three tools. - Bit[PHOENIX CONTACT] Model: SF-BIT-HEX 5-50 - Torque wrench that includes a torque measurement range of 9 N·m - Bit socket holder of 6.35 mm		TSD-M 3NN		1.2 to 3 N·m	100-250-493
M6	Minus	Prepare the following three tools for the models CH70A2088 to 2115, and CH70A4091. - Bit[PHOENIX CONTACT] Model: SF-BIT-SL 1,2X6,5-70 - Torque wrench that includes a torque measurement range of 3.5 N-m - Bit socket holder of 6.35 mm	Torque wrend	ch Bits	socket h	nolder Bit socket	holder
M8	Hex socket (WAF: 6)	Prepare the following three tools. - Bit[PHOENIX CONTACT] Model: SF-BIT-HEX 6-50 - Torque wrench that includes a torque measurement range of 12 N·m - Bit socket holder of 6.35 mm		a a a a a a a a a a a a a a a a a a a			
M10	Hex socket (WAF: 8)	Prepare the following three tools. - Bit[PHOENIX CONTACT] Model: SF-BIT-HEX 8-50 - Torque wrench that includes a torque measurement range of 14 N·m - Bit socket holder of 6.35 mm	ð		5	S : 6.35 mm	sq

Features

Terminal Specifications

Dimensions

Fully-Enclosed Design and Drive Watt Loss Data

Peripheral Devices and Options

Terminal Specifications

• Terminal Size / Wire Gauge

200 V	Class			(⊖:s	lot (–), (🚍 : Minus (–), 🍤 :	Hex socket (WAF	≕ 5), 🔞 : He	ex socket ()	NAF: 6),	8:1	Hex socke	t (WAF: 8
Catalog		Recommended	Wire Range	Wire		inal Screw		Catalog		Recommended	Wire Range	Wire		inal Screw	Tightenin
code CH70A□	Terminal	Gauge mm ²	(IP20 Compatible Gauge) mm ²	Stripping Length ^{*1} mm	Size	Shape	Torque N∙m	code CH70A□	Terminal	Gauge mm ²	(IP20 Compatible Gauge) mm ²	Stripping Length*1 mm	Size	Shape	Torque N∙m
	R/L1, S/L2, T/L3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	38	2 to 38 (22 to 38)	20	M6	6	5 to 5.5
0000	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	2060	U/T1, V/T2, W/T3	22	2 to 22 (14 to 22)	20	M6	6	5 to 5.5
2003	- , +1, +2	2	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	2060	- , +1, +2	50	2 to 50 (22 to 50)	20	M6	6	5 to 5.5
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	14	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.3
	R/L1, S/L2, T/L3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	50	2 to 50 (22 to 50)	20	M6	6	5 to 5.5
2005	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	2075	U/T1, V/T2, W/T3	30	2 to 30 (14 to 30)	20	M6	6	5 to 5.5
2003	- , +1, +2	2	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	2075	- , +1, +2	60	2 to 60 (22 to 60)	20	M6	6	5 to 5.5
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	14	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7
	R/L1, S/L2, T/L3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	38	22 to 38 (22 to 38)	27	M6	6	8 to 9
2008	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	2088	U/T1, V/T2, W/T3	38	22 to 38 (22 to 38)	27	M6	6	8 to 9
2008	- , +1, +2	2	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	2088	- , +1	60	30 to 60 (30 to 60)	27	M8	6	10 to 12
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	22	8 to 22 (8 to 22)	21	M6	•	3 to 3.5
	R/L1, S/L2, T/L3	3.5	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	60	22 to 60 (38 to 60)	27	M6	6	8 to 9
2011	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	0115	U/T1, V/T2, W/T3	60	22 to 60 (38 to 60)	27	M6	6	8 to 9
2011	- , +1, +2	3.5	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	2115	- , +1	80	30 to 80 (50 to 80)	27	M8	M8 (€) 10 tr M6 ● 3 to	10 to 12
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	30	8 to 30 (8 to 30)	21	M6	•	3 to 3.5
	R/L1, S/L2, T/L3	3.5	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	80	50 to 100 (80 to 100)	37	M10	٢	12 to 14
2014	U/T1, V/T2, W/T3	3.5	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	2145	U/T1, V/T2, W/T3	80	50 to 125 (80 to 125)	37	M10	٢	12 to 14
2014	- , +1, +2	5.5	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	2145	-, -, +1, +1*3	38*4	22 to 50 (50)	28	M6	6	8 to 9
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		+3	60	30 to 80*5 (50 to 80)*5	28	M8	٢	8 to 9
	R/L1, S/L2, T/L3	8	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	100	50 to 100 (80 to 100)	37	M10	(8)	12 to 14
2018	U/T1, V/T2, W/T3	3.5	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	2180	U/T1, V/T2, W/T3	125	50 to 125 (80 to 125)	37	M10	٢	12 to 14
2018	- , +1, +2	8	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	2160	- , - , +1, +1* ³	50	22 to 50 (50)	28	M6	6	8 to 9
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		+3	80	30 to 80*5 (50 to 80)*5	28	M8	٢	8 to 9
	R/L1, S/L2, T/L3	14	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		nove the insulate	or from the t	ips of wires	s to the le	ngth	shown in	"Wire
2025	U/T1, V/T2, W/T3	8	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	*2: Wh	en using wire wi to 4.5 N - m.	th a gauge o	ver 30 mm	n², tighten	i to a	tightening	torque
2023	- , +1, +2	14	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	*3: Ter	minals - and + ha	ave two scre	ws. Recon	nmended	Gau	ge means	the wire
	B1, B2	3.5	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7	*4: Use	cables in the rar	ge of applica	ble gauges	to meet t	the IP	20 protec	tive level BR-serie
	R/L1, S/L2, T/L3	14	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	ora	braking resistor	unit (LKEB-	series).			·	
2022	U/T1, V/T2, W/T3	14	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	us	ing 75°C 600 V ssume the follow	class 2 heat	resistant i				
2033	- , +1, +2	22	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	- /	Ambient tempera Niring distance:	ture: 40°C c	or lower				
	B1, B2	5.5	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		Rated current va						
	R/L1, S/L2, T/L3	22	2 to 22 (8 to 22)	18	M5	\ominus	2.3 to 2.5*2								
00.17	U/T1, V/T2, W/T3	14	2 to 14 (5.5 to 14)	18	M5	\ominus	2.3 to 2.5*2								
2047	- , +1, +2	38	2 to 38 (8 to 38)	20	M6	6	5 to 5.5								
	B1, B2	14	2 to 14 (2 to 14)	10	M4	Θ	1.5 to 1.7								

00 V	Class								e terminal screw Hex socket (WAI		ex socket (\	WAF: 6),	(8) : H	lex sock	et (WAF: 8
Catalog		Recommended	Wire Range (IP20	Wire Stripping	Termin	nal Screw	Tightening	Catalog		Recommended	Wire Range (IP20	Wire	Termi	nal Screw	Tightening
code CH70A⊡	Terminal	Gauge mm²	Compatible Gauge) mm ²	Length*1	Size	Shape	Torque N∙m	code CH70A⊡	Terminal	Gauge mm²	Compatible Gauge) mm ²	Stripping Length*1 mm	Size	Shape	Torque N∙m
	R/L1, S/L2, T/L3	2	2 to 14 (2 to 14)	10	M4	θ	1.5 to 1.7		R/L1, S/L2, T/L3	14	2 to 22 (8 to 22)	18	M5	\ominus	2.3 to 2.5*
4002	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	4031	U/T1, V/T2, W/T3	14	2 to 14 (5.5 to 14)	18	M5	\ominus	2.3 to 2.5*
4002	- , +1, +2	2	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	4001	-, +1, +2	22	2 to 38 (8 to 38)	20	M6	6	5 to 5.5
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	5.5	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7
	R/L1, S/L2, T/L3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	14	2 to 14 (3.5 to 14)	18	M5	\ominus	2.3 to 2.5*
	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		U/T1, V/T2, W/T3	14	2 to 14 (5.5 to 14)	18	M5	\ominus	2.3 to 2.5*
4003	- , +1, +2	2	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	4039	- , +1, +2	22	2 to 22 (3.5 to 22)	18	M5	\ominus	2.3 to 2.5*
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	8	2 to 8 (2 to 8)	10	M4	\ominus	1.5 to 1.7
	R/L1, S/L2, T/L3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	14	2 to 14 (3.5 to 14)	18	M5	\ominus	2.3 to 2.5*
	U/T1, V/T2, W/T3	2	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		U/T1, V/T2, W/T3	14	2 to 14 (5.5 to 14)	18	M5	\ominus	2.3 to 2.5*
4005	- , +1, +2	2	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	4045	- , +1	22	2 to 22 (3.5 to 22)	18	M5	\ominus	2.3 to 2.5*
	B1, B2	2	(2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	14	2 to 14	10	M4	\ominus	1.5 to 1.7
	R/L1, S/L2, T/L3	2	(2 to 5.5) 2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	22	(2 to 14) 2 to 22 (3.5 to 22)	18	M5	Θ	2.3 to 2.5*
	U/T1, V/T2, W/T3	2	2 to 14	10	M4	Θ	1.5 to 1.7		U/T1, V/T2, W/T3	22	2 to 22	18	M5	θ	2.3 to 2.5*
4006	- , +1, +2	2	(2 to 14) 2 to 22	18	M5	\ominus	2.3 to 2.5*2	4060	- , +1	30	(3.5 to 22) 2 to 30	18	M5	Θ	2.3 to 2.5*
	B1, B2	2	(2 to 22) 2 to 5.5	10	M4	Θ	1.5 to 1.7		B1, B2	14	(3.5 to 30) 2 to 14				1.5 to 1.7
	R/L1, S/L2, T/L3	2	(2 to 5.5) 2 to 14	10	M4	Θ	1.5 to 1.7		R/L1, S/L2, T/L3	30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.3 to 2.5*		
	U/T1, V/T2, W/T3	2	(2 to 14) 2 to 14	10	M4	Θ	1.5 to 1.7		U/T1, V/T2, W/T3	30	(5.5 to 30) 2 to 30	18	M5	Θ	2.3 to 2.5*
4007	- , +1, +2	2	(2 to 14) 2 to 22	18	M5	Θ	2.3 to 2.5*2	4075	- , +1	38	(5.5 to 30) 2 to 38	20	M6	6	5 to 5.5
	B1, B2	2	(2 to 22) 2 to 5.5	10	M4	Θ	1.5 to 1.7		B1, B2	22	(22 to 38) 2 to 22	18	M5	Θ	2.3 to 2.5*
			(2 to 5.5) 2 to 14			Θ					(3.5 to 22) 22 to 60			6	
	R/L1, S/L2, T/L3	2	(2 to 14) 2 to 14	10	M4		1.5 to 1.7		R/L1, S/L2, T/L3	38	(38 to 60) 22 to 60	27	M6		8 to 9
4009	U/T1, V/T2, W/T3	2	(2 to 14) 2 to 22	10	M4	Θ	1.5 to 1.7	4091	U/T1, V/T2, W/T3	38	(38 to 60) 30 to 80	27	M6	6	8 to 9
	- , +1, +2	3.5	(2 to 22) 2 to 5.5	18	M5	Θ	2.3 to 2.5*2		-, +1	50	(50 to 80) 8 to 30	27	M8	6	10 to 12
	B1, B2	2	(2 to 5.5) 2 to 14	10	M4	Θ	1.5 to 1.7		B1, B2	30	(8 to 30) 50 to 100	21	M6	•	3 to 3.5
	R/L1, S/L2, T/L3	3.5	(2 to 14) 2 to 14)	10	M4	Θ	1.5 to 1.7		R/L1, S/L2, T/L3	60*4	(80 to 100) 50 to 125	37	M10	8	12 to 14
4015	U/T1, V/T2, W/T3	3.5	(2 to 14)	10	M4	Θ	1.5 to 1.7	4112	U/T1, V/T2, W/T3	60*4	(80 to 125)	37	M10	8	12 to 14
	- , +1, +2	5.5	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2		-,-,+1,+1*3	30*4	22 to 50 (50)	28	M6	6	8 to 9
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	50	30 to 80*5 (50 to 80)*5	28	M8	6	8 to 9
	R/L1, S/L2, T/L3	8	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7		R/L1, S/L2, T/L3	80	50 to 100 (80 to 100)	37	M10	8	12 to 14
4018	U/T1, V/T2, W/T3	5.5	2 to 14 (2 to 14)	10	M4	\ominus	1.5 to 1.7	4150	U/T1, V/T2, W/T3	80	50 to 125 (80 to 125)	37	M10	8	12 to 14
1010	- , +1, +2	14	2 to 22 (2 to 22)	18	M5	\ominus	2.3 to 2.5*2	4100	-, -, +1, +1* ³	38*4	22 to 50 (50)	28	M6	6	8 to 9
	B1, B2	2	2 to 5.5 (2 to 5.5)	10	M4	\ominus	1.5 to 1.7		B1, B2	60	30 to 80*5 (50 to 80)*5	28	M8	6	8 to 9
	R/L1, S/L2, T/L3	14	2 to 22 (8 to 22)	18	M5	\ominus	2.3 to 2.5*2	*1: Rer Stri	nove the insulate	or from the t	ips of wires	to the le	ngth s	shown in	"Wire
	U/T1, V/T2, W/T3	8	2 to 14 (5.5 to 14)	18	M5	\ominus	2.3 to 2.5*2	* 2: Wh	en using wire wi	th a gauge c	over 30 mm	¹² , tighter	to a	tightenin	g torque o
	0, 1 1, 1, 12, 11, 10	14 2 to 38 20 M6 🖨 5 to 5			 4.1 to 4.5 N - m. *3: Terminals - and + have two screws. Recommended Gauge means the wire gauge of one terminal. 										
4024	- , +1, +2	14	2 to 38 (8 to 38)	20	M6	6	5 to 5.5	*3: Ter	minals - and + ha	ave two scre	ws. Recom	nmended	Gaug	e means	the wire

Note: The recommended wire gauges based on drive continuous current ratings using 75°C 600 V class 2 heat resistant indoor PVC wire. Assume the following usage conditions: - Ambient temperature: 40°C or lower - Wiring distance: 100 m or shorter

- Rated current value

Features

Model Number/ Catalog Code / Selecting the Capacity

Basic Instructions

Standard Specifications

Standard Connection Diagram

Terminal Specifications

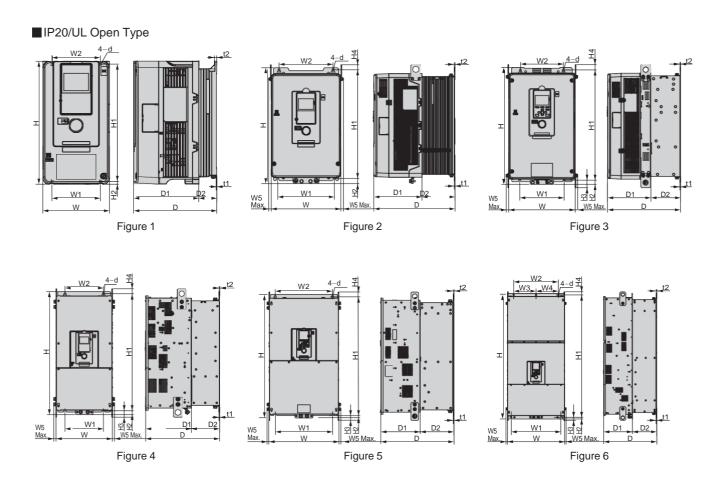
Dimensions

Fully-Enclosed Design and Drive Watt Loss Data

Peripheral Devices and Options

Dimensions

Enclosure Protection Design


200 V Class

Catalog Code CH7UA	2003	2005	2008	2011	2014	2018	2025	2033	2047	2060	2075	2088	2115	2145	2180	2215	2283	2346	2415
Max. Applicable kW Motor Capacity	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
IP20/UL Open Type	IP20 st	upporte	d with s	tandard	d model														
IP20/UL Type 1															*				

400 V Class

Catalog Code CH70A	4002	4003	4005	4006	4007	4009	4015	4018	4024	4031	4039	4045	4060	4075	
Max. Applicable kW Motor Capacity	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	
IP20/UL Open Type	IP20 supp	oorted with	standard	l model											
IP20/UL Type 1															
					1010	1000					1005				
Catalog Code CH70A	4091	4112	4150	4180	4216	4260	4304	4371	4414	4453	4605				
Max. Applicable kW Motor Capacity	45	55	75	90	110	132	160	200	220	250	315				
IP20/UL Open Type	IP20 supp	oorted with	standard	l model											
IP20/UL Type 1	Optional (Install a UI	Type 1	kit on an IP	20/UL Op	en Type dr	ive.)	*	*	*	*				

*: UL Type 1 is not available for this capacity.

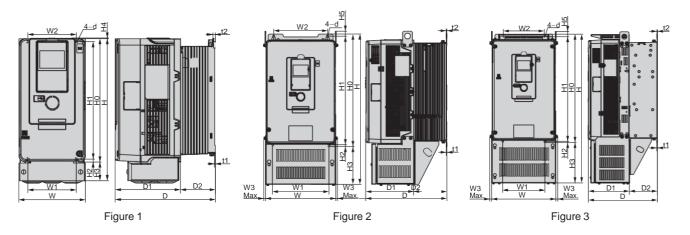
200 V Class																				
Catalog Code	Figure									ensions									Weight kg	>
CH70A[_]	riguic	W	H	D	D1	D2	W1	W2	W3	W4	W5	H1	H2	H3	H4	t1	t2	d	Weight Kg	er/ e / acity
2003																				Code
2005	1	140	260	176	138	38	102	102	_	_	_	248	6	_	_	1.6	5	M5	3.5	Model Number/ Catalog Code / Selecting the Capacity
2008			200			00						2.0	Ū				Ũ		0.0	Mod Cata
2011																				Sel
2014	1	140	260	211	138	73	102	102	_	_	_	248	6	_	_	1.6	5	M5	3.9	
2018			200									2.0	Ũ				Ũ		0.0	c
2025	1	140	260	211	138	73	102	102	_	_	_	248	6	_	_	1.6	5	M5	4.2	Basic Instructions
2033		110	200	211	100	10	102	102				210	Ū			1.0	Ŭ	ivio	1.4	E
2047	1	180	300	202	134	68	140	140	—	—	—	284	8	—	—	1.6	1.6	M5	6.0	
2060	1	220	350	227	140	87	192	192	-	-	-	335	8	—	-	2.3	2.3	M6	8.5	S
2075	1	220	350	227	140	87	192	192	—	—	—	335	8	—	—	2.3	2.3	M6	9	ard tion
2088	2	240	400	280	166	114	195	186	—	—	12	375	17.5	—	17.5	2.3	2.3	M6	22	anda ifica
2115	3	255	450	280	166	114	170	165	—	—	12	424	16	29	21	2.3	2.3	M6	24	Standard Specifications
2145	3	264	543	335	186	149	190	182	—	—	12	516	17.5	28.5	20.5	2.3	2.3	M8	39	S
2180	3	264	543	335	186	149	190	182	—	—	12	516	17.5	28.5	20.5	2.3	2.3	M8	40	E
2215	4	312	700	420	260	160	218	218	_	_	18	659	28	43.5	28.5	4.5	4.5	M10	67	iagra
2283	-+	012	700	420	200	100	210	210			10	000	20	-0.0	20.0	4.5	4.5	WITO	01	ndar D D
2346	5	440	800	472	254	218	370	370	—	—	20	757	28	44	30	4.5	4.5	M12	104	Sta
2415	5	440	800	472	254	218	370	370	_	—	20	757	28	44	30	4.5	4.5	M12	119	Standard Connection Diagram

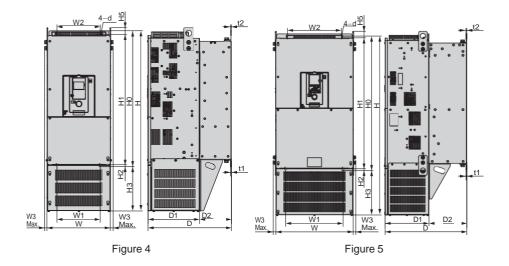
00 V Class									Dire										
Catalog Code CH70A	Figure	W	н	D	D1	D2	W1	W2	Dime W3	ensions W4	mm W5	H1	H2	H3	H4	t1	t2	d	Weight kg
4002						02							112	110				ŭ	
4003	1	140	260	176	138	38	102	102	_	_	_	248	6	_	_	1.6	5	M5	3.5
4005																			
4006																			
4007	1	140	260	211	138	73	102	102	_	_	_	248	6	_	_	1.6	5	M5	3.9
4009																			
4015		4.46	000	011	100	70	100	100				0.46	0			4.0	-		4.0
4018	1	140	260	211	138	73	102	102	_	_	_	248	6	_	_	1.6	5	M5	4.2
4024	4	400	000	000	404	<u> </u>	4.40	4.40				004	0			4.0	4.0		0.0
4031	1	180	300	202	134	68	140	140	_	_	_	284	8	_	_	1.6	1.6	M5	6.0
4039	1	220	350	227	140	87	192	192	—	—	—	335	8	—	—	2.3	2.3	M6	7.5
4045	1	220	350	246	140	106	192	192	—	—	—	335	8	-	—	2.3	2.3	M6	12
4060	2	240	400	280	166	114	195	186	—	—	12	375	17.5	—	17.5	2.3	2.3	M6	17
4075	3	255	450	280	166	114	170	165	—	—	12	424	16	29	21	2.3	2.3	M6	22
4091	3	255	450	280	166	114	170	165	—	—	12	424	16	29	21	2.3	2.3	M6	25
4112	3	264	543	335	186	149	190	182	—	—	12	516	17.5	28.5	20.5	2.3	2.3	M8	38
4150	3	264	543	335	186	149	190	182	—	_	12	516	17.5	28.5	20.5	2.3	2.3	M8	39
4180																			
4216	4	312	700	420	260	160	218	218	—	—	18	659	28	43.5	28.5	4.5	4.5	M10	71
4260																			
4304	5	440	800	472	254	218	370	370	—	—	20	757	28	44	30	4.5	4.5	M12	122
4371	5	440	800	472	254	218	370	370	—	—	20	757	28	44	30	4.5	4.5	M12	126
4414	6	510	1136	480	260	220	450	450	225	225	20	1093	25.5	43.5	30.5	4.5	4.5	M12	198
4453	0	010		.50	200	0	.50	.50	0	0	20		20.0	.0.0	00.0	0			.00
4605	6	510	1136	480	260	220	450	450	225	225	20	1093	25.5	43.5	30.5	4.5	4.5	M12	207

Note: External and mounting dimensions are different for standard mounting and panel through mounting. Please refer to page 39 for panel through mounting.

Features

Terminal Standard Specifications Connection Diagram


Dimensions


Fully-Enclosed Design and Drive Watt Loss Data

Peripheral Devices and Options

Dimensions

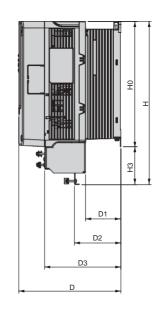
IP20/UL Type 1

200 V Cla	ass: IP:	20/UL	Туре	1																	Рe
Catalog Code	Figure								Dime	ensions	mm								Weight	UL Type 1 Kit Model	>
CH70A[]]	Figure	W	н	D	D1	D2	W1	W2	W3	H0	H1	H2	H3	H4	H5	t1	t2	d	kg	(Code No.)	iber/ de / apacit
2003 2005 2008	1	140	300	176	138	38	102	102	_	260	248	6	40	1.5	_	1.6	5	М5	4.1	900-192-121-001 (100-202-326)	Model Number/ Catalog Code / Selecting the Capacity
2011 2014 2018	1	140	300	211	138	73	102	102	-	260	248	6	40	1.5	-	1.6	5	M5	4.5	900-192-121-001 (100-202-326)	Basic Instructions
2025 2033	1	140	300	211	138	73	102	102	_	260	248	6	40	1.5	_	1.6	5	M5	4.8	900-192-121-001 (100-202-326)	Ba Instru
2047	1	180	340	202	134	68	140	140	_	300	284	8	40	1.5	_	1.6	1.6	M5	7.0	900-192-121-002 (100-202-327)	SU
2060	1	220	400	227	140	87	192	192	_	350	335	8	50	1.5	_	2.3	2.3	M6	9	900-192-121-003 (100-202-328)	Standard Specifications
2075	1	220	435	227	140	87	192	192	-	350	335	8	85	1.5	—	2.3	2.3	M6	10	900-192-121-004 (100-202-329)	St: Spec
2088	2	244	500	280	166	114	195	186	10	400	375	17.5	100	_	17.5	2.3	2.3	M6	24	900-192-121-005 (100-202-330)	ıgram
2115	3	259	580	280	166	114	170	165	10	450	424	16	130	-	21	2.3	2.3	M6	27	900-192-121-006 (100-208-526)	Standard Connection Diagram
2145	3	268	700	335	186	149	190	182	10	543	516	17.5	157	_	20.5	2.3	2.3	M8	44	900-192-121-007 (100-208-527)	Connec
2180	3	268	770	335	186	149	190	182	10	543	516	17.5	227	-	20.5	2.3	2.3	M8	46	900-192-121-008 (100-208-528)	
2215 2283	4	316	915	420	260	160	218	218	16	700	659	28	215	_	28.5	4.5	4.5	M10	72	900-192-121-009 (100-208-549)	Terminal Specifications
2346	5	444	1045	472	254	218	370	370	18	800	757	28	245	_	30	4.5	4.5	M12	113	900-192-121-010 (100-213-136)	Spt.

00 V Cl	ass: IP	20/UL	Туре	1																
Catalog Code	Figure				1	1			Dime	ensions	mm		1				1		Weight	UL Type 1 Kit Model
COULE CH70A	Figure	W	н	D	D1	D2	W1	W2	W3	H0	H1	H2	H3	H4	H5	t1	t2	d	kg	(Code No.)
4002																				900-192-121-001
4003	1	140	300	176	138	38	102	102	—	260	248	6	40	1.5	-	1.6	5	M5	4.1	(100-202-326)
4005																				
4006 4007	1	140	300	211	138	73	102	102		260	248	6	40	1.5	_	1.6	5	М5	4.5	900-192-121-001
4007	'	140	300	211	136	13	102	102		260	248	0	40	1.5		1.0	Э	CIVI	4.5	(100-202-326)
4015																				900-192-121-001
4018	1	140	300	211	138	73	102	102	_	260	248	6	40	1.5	_	1.6	5	M5	4.8	(100-202-326)
4024	1	180	240	202	134	68	140	140	_	300	284	8	40	1.5	_	1.6	1.6	M5	7.0	900-192-121-002
4031	1	180	340	202	134	00	140	140		300	264	0	40	1.5		1.0	1.0	CIVI	7.0	(100-202-327)
4039	1	220	400	227	140	87	192	192	—	350	335	8	50	1.5	—	2.3	2.3	M6	8.5	900-192-121-003 (100-202-328)
4045	1	220	400	246	140	106	192	192	—	350	335	8	50	1.5	_	2.3	2.3	M6	13	900-192-121-003 (100-202-328)
4060	2	244	500	280	166	114	195	186	10	400	375	17.5	100	-	17.5	2.3	2.3	M6	20	900-192-121-005 (100-202-330)
4075	3	259	580	280	166	114	170	165	10	450	424	16	130	—	21	2.3	2.3	M6	25	900-192-121-006 (100-208-526)
4091	3	259	580	280	166	114	170	165	10	450	424	16	130	—	21	2.3	2.3	M6	29	900-192-121-006 (100-208-526)
4112	3	268	700	335	186	149	190	182	10	543	516	17.5	157	—	20.5	2.3	2.3	M8	43	900-192-121-007 (100-208-527)
4150	3	268	700	335	186	149	190	182	10	543	516	17.5	157	—	20.5	2.3	2.3	M8	44	900-192-121-007 (100-208-527)
4180																				000 400 404 000
4216 4260	4	316	915	420	260	160	218	218	16	700	659	28	215	-	28.5	4.5	4.5	M10	76	900-192-121-009 (100-208-549)
4304	5	444	1045	472	254	218	370	370	18	800	757	28	245	_	30	4.5	4.5	M12	130	900-192-121-010 (100-213-136)

Note: UL Type 1 kit (option) is required. The values in the table are the dimensions for the UL Type 1 kit mounted to the IP20/UL Open Type drive.

Dimensions


Fully-Enclosed Design and Drive Watt Loss Data

> Peripheral Devices and Options

Dimensions

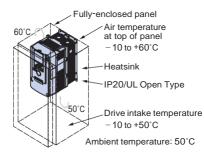
■IP20/UL Open Type (Shield Clamp Kit)

200 V Class: IP20/UL Open Type (Shield Clamp Kit)

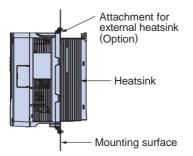
Catalog Code				Di	mensions n	nm				Shield Clamp Kit
CH70A	W	Н	D	D1	D2	D3	W1	H0	H3	Model (Code No.)
2003										
2005	140	339	176	38	61	123	137	260	79	900-195-896-001
2008	140	339	170	30	01	123	137	260	79	(100-206-983)
2011										
2014										
2018	140	339	211	73	96	158	137	260	79	900-195-896-001
2025	140	000	211	10	50	100	107	200	15	(100-206-983)
2033										
2047	180	439	202	68	93	148	175	298	141	900-195-896-002 (100-206-984)
2060	220	468	227	87	112	174	220	350	118	900-195-896-003 (100-229-140)
2075	220	468	227	87	112	174	220	350	118	900-195-896-004 (100-229-141)
2088	240	490	280	114	139	217	244	390	100	900-195-896-007 (100-229-144)
2115	255	582	280	114	151	226	259	440	142	900-195-896-009 (100-229-146)
2145	264	697	335	149	189	266	268	533	164	900-195-896-012 (100-233-647)
2180	264	697	335	149	189	266	268	533	164	900-195-896-013 (100-233-700)

400 V Class: IP20/UL Open Type (Shield Clamp Kit)

Catalog Code				Di	mensions n	nm				Shield Clamp Kit
CH70Á	W	Н	D	D1	D2	D3	W1	H0	H3	Model (Code No.)
4002										000 405 000 004
4003	140	339	176	38	61	123	137	260	79	900-195-896-001 (100-206-983)
4005										
4006										
4007										900-195-896-001
4009	140	339	211	73	96	158	137	260	79	(100-206-983)
4015										
4018										
4024	180	439	202	68	93	148	175	298	141	900-195-896-002
4031										(100-206-984)
4039	220	468	227	87	112	174	220	350	118	900-195-896-005 (100-229-142)
4045	220	468	227	87	112	174	220	350	118	900-195-896-006 (100-229-143)
4060	240	490	280	114	139	217	244	390	100	900-195-896-008 (100-229-145)
4075	255	557	280	114	151	226	259	440	117	900-195-896-010 (100-233-645)
4091	255	582	280	114	151	226	259	440	142	900-195-896-011 (100-233-646)
4112	264	697	335	149	189	266	268	533	164	900-195-896-014 (100-233-701)
4150	264	697	335	149	189	266	268	533	164	900-195-896-012 (100-233-647)

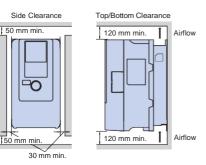

Features

Terminal Standard Specifications Connection Diagram


Fully-Enclosed Design and Drive Watt Loss Data

When you install the drive in a control panel, the maximum intake air temperature is 50°C. The heatsink can alternatively be mounted outside the control panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up.

·Cooling Design for Fully-Enclosed Panel



$\cdot \text{Mounting}$ the External Heatsink

Intake air temperature for external heatsink Open chassis side: 50 °C Heatsink side: 50 °C Use only an IP20/UL Open Type for the external heatsink.

·Ventilation Space

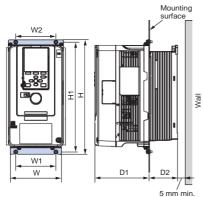
For installing the drive (IP20/UL Open Type) with capacity of 200 V/400 V class 22 kW and above, be sure to leave enough clearance during installation for main circuit wiring for maintenance.

Drive Watt Loss Data

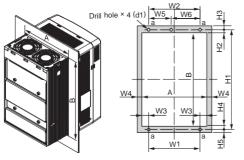
200 V Cla	SS														
Catalog Code	e CH70A2	003	005	008	011	014	018	025	033	047	060	075	088	115	145
Rated Output	Current A	3.2	5	8	11	14	17.5	25	33	47	60	75	88	115	145
Carrier Freque	ency kHz	2	2	2	2	2	2	2	2	2	2	2	2	2	2
\\/~** ~~~*	Internal	5	9	16	21	27	32	36	53	59	110	134	147	209	265
Watt Loss* W	Heatsink	7	13	27	42	59	74	95	126	155	299	357	467	613	748
vv	Total Watt Loss	12	22	43	63	86	106	131	179	214	409	491	614	822	1013
Catalog Code	e CH70A2	180	215	283	346	415									
Rated Output	Current A	180	215	283	346	415									
Carrier Freque	ency kHz	2	2	2	2	2									
\\/~** ~~~*	Internal	297	362	459	520	603									
Watt Loss* W	Heatsink	935	1144	1508	1769	2216									
vv	Total Watt Loss	1232	1506	1967	2289	2819									

400 V Class

Catalog Code	CH70A4	002	003	005	006	007	009	015	018	024	031	039	045	060	075
Rated Output	Current A	1.8	3.4	4.8	5.5	7.2	9.2	14.8	18	24	31	39	45	60	75
Carrier Freque	ency kHz	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Watt Loss*	Internal	13	12	21	28	35	44	55	63	93	121	132	141	188	188
Wall Loss*	Heatsink	14	18	32	50	70	86	116	141	206	286	331	365	497	557
vv	Total Watt Loss	27	30	53	78	105	130	171	204	299	407	463	506	685	745
Catalog Code	CH70A4	091	112	150	180	216	260	30	4 37	71 4	414	453	605		
Rated Output	Current A	91	112	150	180	216	260	30	4 37	71 4	414	453	605		
Carrier Freque	ency kHz	2	2	2	2	2	2	2	2	2	2	2	2		
Watt Loss*	Internal	225	275	385	397	564	573	72	8 97	76 1	118 1	272	1495		
Wall Loss**	Heatsink	658	804	1012	1279	1484	1709	9 207	′5 27 [°]	78 3	3133 3	559	4500		
vv	Total Watt Loss	883	1079	1397	1676	2048	2282	2 280	3 37	54 4	251 4	831	5995		


*: Watt loss is calculated in the following conditions:

200 V class: Input voltage 220 V, power frequency 60 Hz, load ratio 100%
 400 V class: Input voltage 440 V, power frequency 60 Hz, load ratio 100%


Contact your Yaskawa or nearest agent when not calculating watt loss in the above conditions.

Heatsink External Mounting Kit

When the heatsink is installed outside the drive, additional attachments are required. Additional attachments are not required for models CH70A2088 and above, and CH70A4060 and above because installing a heatsink outside the drive can be performed on these models by replacing their standard mounting feet. Contact Yaskawa if an instruction manual is needed.

Panel Modification for External Heatsink

Panel cut out dimensions

Note: The shaded area is the size when in installing the gasket. Guarantee a wider and higher gasket width space than the following W and H information.

Catalog Code				Ex	terior a	nd Mou	nting Di	mensio	ons and	Cut-ou	t Dimei	nsions r	nm				Attachment for External
CH70A	W	Н	D1	D2	W1	W2	W3	W4	H1	H2	H3	H4	H5	А	В	d1	Heatsink Model (Code No.)
2003																	
2005	140	294	138	38	102	102	16	3	282	23	6	26	6	134	233	M5	900-193-209-001
2008	140	294	130	30	102	102	10	3	202	23	0	20	0	134	233	IVIS	(100-203-229)
2011																	
2014																	
2018	140	294	138	73	102	102	16	3	282	23	6	26	6	134	233	M5	900-193-209-001
2025	140	294	130	13	102	102	10	3	202	23	0	20	0	134	233	IVIS	(100-203-229)
2033																	
2047	180	329	134	68	140	140	17	3	318	23.5	5	24.5	6	174	270	M5	900-193-209-002 (100-203-230)
2060	220	384	140	87	192	192	11	3	371	27	7	25	6	214	319	M6	900-193-209-003
2075	220	364	140	67	192	192		3	3/1	21	'	25	0	214	319	IVIO	(100-203-231)
2088	240	400	166	114	195	204	14.5	8	385	19.5	7.5	19.5	7.5	224	346	M6	—
2115	255	450	166	114	170	210	34.5	8	436	20	8	20	6	239	396	M6	—
2145	264	543	186	149	190	220	29	8	527	19.5	8.5	20.5	7.5	248	487	M8	_
2180	204	545	100	149	190	220	29	0	521	19.5	0.5	20.5	7.5	240	407	IVIO	
2215	312	700	260	160	218	263	39	8	675	33	12	32	13	296	610	M10	_
2283	512	700	200	100	210	203	59	0	075	33	12	32	13	290	010	WITO	
2346	440	800	254	218	370	310	23	12	773	31.5	14	31.5	13	416	710	M12	_
2415	-++0	000	204	210	570	510	20	12	115	51.5	14	51.5	13	-10	/10	IVI I Z	

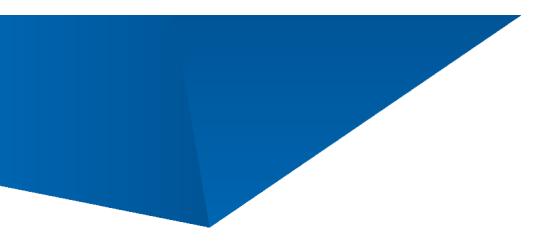
400 V Class

200 V Class

Catalog Code					Exteri	or and	Mount	ing Dir	nensio	ons and	d Cut-c	ut Dim	nensio	ns mm					Attachment for External
CH70A[]]	W	н	D1	D2	W1	W2	W3	W4	W5	W6	H1	H2	НЗ	H4	H5	А	В	d1	Heatsink Model (Code No.)
4002																			900-193-209-001
4003	140	294	138	38	102	102	16	3	_	—	282	23	6	26	6	134	233	M5	(100-203-229)
4005																			
4006																			
4007																			900-193-209-001
4009	140	294	138	73	102	102	16	3	_	_	282	23	6	26	6	134	233	M5	(100-203-229)
4015																			
4018 4024																			
-	180	329	134	68	140	140	17	3	_	_	318	23.5	5	24.5	6	174	270	M5	900-193-209-002
4031 4039				07															(100-203-230)
4039	220	384	140	87 106	192	192	11	3	_	—	371	27	7	25	6	214	319	M6	900-193-209-003 (100-203-231)
4045	240	400	166	106	195	204	14.5	8			385	19.5	7.5	19.5	7.5	224	346	M6	(100-203-231)
4060	240	400	100	114	195	204	14.5	0	_	_	300	19.5	C. 1	19.5	C. 1	224	340	IVIO	—
4075	255	450	166	114	170	210	34.5	8	—	—	436	20	8	20	6	239	396	M6	—
4091																			
4112	264	543	186	149	190	220	29	8	—	—	527	19.5	8.5	20.5	7.5	248	487	M8	—
4180																			
4216	312	700	260	160	218	263	39	8	_	_	675	33	12	32	13	296	610	M10	_
4260	312	100	200	100	210	203	39	0			075	55	12	52	15	290	010	IVITO	
4304																			
4371	440	800	254	218	370	310	23	12	—	—	773	31.5	14	31.5	13	416	710	M12	-
4414																			
4453	510	1140	260	220	450	404	18	12	179	225	1110	34	15	34	15	486	1042	M12	_
4605	010	1140	200	220	400	-0-	10	12	115	220	1110	-0	10	04	10	400	1042	10112	
+000																			

Peripheral Devices and Options

Power Supply	Name	Purpose	Model, Manufacturer
	Power Regenerative Converter D1000	Effectively utilizes regenerative energy as energy for other equipment. Suppresses the power line harmonics ($K_5 = 0$) and satisfies the Guidelines of Harmonics Reduction.	CIMR-DA
Earth Leakage Circuit Breaker	Power Regenerative Unit R1000	Effectively utilizes regenerative energy as energy for other equipment.	
(ELCB), Molded Case Circuit Breaker (MCCB)	Earth Leakage Circuit Breaker (ELCB)	Always install an ELCB on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of shortcircuit, and to protect the drive from ground faults that could result in electric shock or fire. Note: When an ELCB is installed for the upper power supply system, an MCCB can be used instead of an ELCB. Choose an ELCB designed to minimize harmonics specifically for AC drives. Use one ELCB per drive, each with a current rating of at least 30 mA.	NV series ^{*2} by Mitsubishi Electric Corporation
Contactor	Molded Case Circuit Breaker (MCCB)	Always install a circuit breaker on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of a short-circuit.	NF series*2 by Mitsubishi Electric Corporation
	Magnetic Contactor	Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used.	SC series*2 by Fuji Electric FA Components & Systems Co., Ltd
AC Reactor	AC Reactor	Improve the input power ratio of the drive. The DC reactor is built in for models of catalog codes CH70A2088 and above, and CH70A4045 and above. (The DC reactor is optional for models of catalog codes CH70A2075 and below, and CH70A4039 and below.)	UZBA series
Zero Phase Reactor Fuse	DC Reactor	 Used for harmonic current suppression and total improving power factor. Should be used if the power supply capacity is larger than 600 kVA. Suppresses harmonic current Improves the power factor of the input power supply 	UZDA series
Input Noise Filter	Zero Phase Reactor	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides.	F6045GB F11080GB F200160PB by Hitachi Metals, Ltd.
*1 Power Regenerative	Fuse / Fuse Holder	Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Note: Refer to the instruction manual for information on UL approval.	CR/CS series by BUSSMANN
Converter D1000	Input Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Note: For CE Marking (EMC Directive) compliant models, refer to CH700 Technical Manual.	RTEN seies by TDK-Lambda Corporation B84143B series by EPCOS, Inc. FN series by Schaffner EMC K.K.
	Output Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LF series by NEC Tokin Corporation
Power Regenerative Unit R1000	External Heatsink Attachment for Braking Unit	Use the external heatsink attachment for installation with the heatsink outside the enclosure.	EZZ021711A
*1 Ground	Braking Resistor Unit	Used to shorten the deceleration time by dissipating regenerative energy through a resistor unit (10% ED). A thermal overload relay is built in (10% ED).	LKEB series
- Braking Resistor Unit	Braking Unit	Shortened deceleration time results when used with a Braking Resistor Unit.	CDBR series
- Braking Unit	PC cable	Connect the drive and PC when using DriveWizard. The cable length must be 3 m or less.	Commercially available USB2.0 A-miniB cable.
USB Port	LED Keypad	For easier operation using the LED screen when connecting the optional LED Keypad to the drive. Allows for remote operation. Includes a Copy function for saving drive settings.	JVOP- KPLEA04AAA KPLEA04MAA
PC Noise Filter	Bluetooth LCD Keypad	Bluetooth connection enables the drive to be operated from a smartphone.	JVOP- KPLCC04ABA KPLCC04MBA
(output side)	Keypad Extension Cable	It is used as an extension cable when operating the keypad remotely.	WV001: 1 m WV003: 3 m
Zero Phase Reactor			
Motor			
Ground		ices to match how regenerative energy is processed. askawa. Contact the manufacturer in question for availability ts.	y and specifications of


Option Cards

RoHS compliant. Shipment of factory installed option is available. Contact Yaskawa.

Туре	Name	Model	Function	Manual No.	umbe Code e Car
rence Card	Analog Input	AI-A3	Enables high-precision and high-resolution analog speed reference setting. ·Input signal level: -10 to +10 Vdc (20 k▲), 4 to 20 mA (250 ▲) ·Input channels: 3 channels, DIP switch for input voltage/input current selection ·Input resolution: Input voltage 13 bit signed (1/8192) Input current 1/4096	TOBPC73060078	Model Number/ Catalog Code / Selecting the Capaci
Speed Reference Card	Digital Input	DI-A3	Enables 16-bit digital speed reference setting. •Input signal: 16 bit binary, 4 digit BCD +sign signal +set signal •Input voltage: 24 V (isolated) •Input current: 8 mA User-set: 8 bit, 12 bit, 16 bit	TOBPC73060080	Basic Instructions
	MECHATROLINK-II Interface	SI-T3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through MECHATROLINK-II communication with the host controller.	TOEPC73060086	rd ions
			Note: Use options with software versions of 6108 or later.	SIEPC73060086	anda
	MECHATROLINK-III	SI-ET3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through MECHATROLINK-III communication with the host controller.	TOEPC73060088	Standard Specifications
			Note: Use options with software versions of 6202 or later.	SIEPC73060088	gram
	CC-Link Interface	SI-C3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through CC-Link communication with the host controller.	TOBPC73060083 SIEPC73060083	Standard Connection Diagram
Communications Option Card	DeviceNet Interface	SI-N3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through DeviceNet communication with the	TOBPC73060084	Connec
Optic			host controller. Note: Use options with software versions of 1114 or later.	SIEPC73060084	su
ions		SI-P3	Used for running or stopping the drive, setting or referencing parameters, and monitoring	TOBPC73060082	Terminal Specifications
nicat	PROFIBUS-DP Interface	51-P3	output frequency, output current, or similar items through PROFIBUS-DP communication with the host controller.	SIEPC73060082	Teri pecifi
nmm	CANopen Interface	SI-S3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through CANopen communication with the	TOBPC73060085	လ
Ö	OANopen menaee	0100	host controller.	SIEPC73060085	SL
	EtherNet/IP Interface	SI-EN3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency,	TOEPC73060092	nsior
			output current, or similar items through EtherNet/IP communication with the host controller.	SIEPC73060092	Dimensions
	Modbus TCP/IP Interface	SI-EM3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency,	TOEPC73060091	
			output current, or similar items through Modbus TCP/IP communication with the host controller.	SIEPC73060091	sed Irive ata
	PROFINET Interface	SI-EP3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through PROFINET communication with the host controller.	TOEPC73060089	Fully-Enclosed Design and Drive Watt Loss Data
			Note: The drive is compatible with option software versions 4400 and later.	SIEPC73060089	Ful Des Wa
nitor Option Card	Analog Monitor	AO-A3	Outputs analog signal for monitoring drive output state (output freq., output current etc.). •Output resolution: 11 bit signed (1/2048) •Output voltage: -10 to +10 Vdc (non-isolated) •Terminals: 2 analog outputs	TOBPC73060079	ipheral Devices and Options
Monitor O	Digital Output	DO-A3	Outputs isolated type digital signal for monitoring drive run state (alarm signal, zero speed detection, etc.) •Terminals: 6 photocoupler outputs (48 V, 50 mA or less) 2 relay contact outputs (250 Vac, 1 A or less 30 Vdc, 1 A or less)	TOBPC73060081	Periphera and O
p	Complimentary Type PG	PG-B3	 For control modes requiring a PG encoder for motor feedback. Phase A, B, and Z pulse (3-phase) inputs (complementary type) Max. input frequency: 50 kHz Pulse monitor output: Open collector, 24 V, max. current 30 mA Power supply output for PG: 12 V, max. current 200 mA 	TOBPC73060075	
PG Speed Controller Card	Line Driver PG	PG-X3	 For control modes requiring a PG encoder for motor feedback. Phase A, B, and Z pulse (differential pulse) inputs (RS-422) Max. input frequency: 300 kHz Pulse monitor output: RS-422 Power supply output for PG: 5 V or 12 V, max. current 200 mA 	TOBPC73060076	
	Resolver Interface for TS2640N321E64	PG-RT3	For control modes requiring a PG encoder for motor feedback. Can be connected to the TS2640N321E64 resolver made by Tamagawa Seiki Co., Ltd. And electrically compatible resolvers. The representative electrical characteristics of the TS2640N321E64 are as follows. Input voltage: 7 Vac rms 10 kHz Transformation ratio: 0.5 ± 5% maximum input current: 100 mArms Wiring length: 10 m max. res a separate configuration file to link to the network.	TOBPC73060087	

2. PG speed controller card is required for PG control.

Model Number/ Catalog Code / Selecting the Capacity

YASKAWA ELECTRIC CORPORATION

Specifications are subject to change without notice for ongoing product modifications and improvements.

YASKAWA